YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Forecast Model Bias Correction in Ocean Data Assimilation

    Source: Monthly Weather Review:;2005:;volume( 133 ):;issue: 005::page 1328
    Author:
    Chepurin, Gennady A.
    ,
    Carton, James A.
    ,
    Dee, Dick
    DOI: 10.1175/MWR2920.1
    Publisher: American Meteorological Society
    Abstract: Numerical models of ocean circulation are subject to systematic errors resulting from errors in model physics, numerics, inaccurately specified initial conditions, and errors in surface forcing. In addition to a time-mean component, the systematic errors include components that are time varying, which could result, for example, from inaccuracies in the time-varying forcing. Despite their importance, most assimilation algorithms incorrectly assume that the forecast model is unbiased. In this paper the authors characterize the bias for a current assimilation scheme in the tropical Pacific. The characterization is used to show how relatively simple empirical bias forecast models may be used in a two-stage bias correction procedure to improve the quality of the analysis.
    • Download: (1.906Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Forecast Model Bias Correction in Ocean Data Assimilation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4228917
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorChepurin, Gennady A.
    contributor authorCarton, James A.
    contributor authorDee, Dick
    date accessioned2017-06-09T17:26:52Z
    date available2017-06-09T17:26:52Z
    date copyright2005/05/01
    date issued2005
    identifier issn0027-0644
    identifier otherams-85467.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4228917
    description abstractNumerical models of ocean circulation are subject to systematic errors resulting from errors in model physics, numerics, inaccurately specified initial conditions, and errors in surface forcing. In addition to a time-mean component, the systematic errors include components that are time varying, which could result, for example, from inaccuracies in the time-varying forcing. Despite their importance, most assimilation algorithms incorrectly assume that the forecast model is unbiased. In this paper the authors characterize the bias for a current assimilation scheme in the tropical Pacific. The characterization is used to show how relatively simple empirical bias forecast models may be used in a two-stage bias correction procedure to improve the quality of the analysis.
    publisherAmerican Meteorological Society
    titleForecast Model Bias Correction in Ocean Data Assimilation
    typeJournal Paper
    journal volume133
    journal issue5
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR2920.1
    journal fristpage1328
    journal lastpage1342
    treeMonthly Weather Review:;2005:;volume( 133 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian