YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Using Bayesian Model Averaging to Calibrate Forecast Ensembles

    Source: Monthly Weather Review:;2005:;volume( 133 ):;issue: 005::page 1155
    Author:
    Raftery, Adrian E.
    ,
    Gneiting, Tilmann
    ,
    Balabdaoui, Fadoua
    ,
    Polakowski, Michael
    DOI: 10.1175/MWR2906.1
    Publisher: American Meteorological Society
    Abstract: Ensembles used for probabilistic weather forecasting often exhibit a spread-error correlation, but they tend to be underdispersive. This paper proposes a statistical method for postprocessing ensembles based on Bayesian model averaging (BMA), which is a standard method for combining predictive distributions from different sources. The BMA predictive probability density function (PDF) of any quantity of interest is a weighted average of PDFs centered on the individual bias-corrected forecasts, where the weights are equal to posterior probabilities of the models generating the forecasts and reflect the models' relative contributions to predictive skill over the training period. The BMA weights can be used to assess the usefulness of ensemble members, and this can be used as a basis for selecting ensemble members; this can be useful given the cost of running large ensembles. The BMA PDF can be represented as an unweighted ensemble of any desired size, by simulating from the BMA predictive distribution. The BMA predictive variance can be decomposed into two components, one corresponding to the between-forecast variability, and the second to the within-forecast variability. Predictive PDFs or intervals based solely on the ensemble spread incorporate the first component but not the second. Thus BMA provides a theoretical explanation of the tendency of ensembles to exhibit a spread-error correlation but yet be underdispersive. The method was applied to 48-h forecasts of surface temperature in the Pacific Northwest in January?June 2000 using the University of Washington fifth-generation Pennsylvania State University?NCAR Mesoscale Model (MM5) ensemble. The predictive PDFs were much better calibrated than the raw ensemble, and the BMA forecasts were sharp in that 90% BMA prediction intervals were 66% shorter on average than those produced by sample climatology. As a by-product, BMA yields a deterministic point forecast, and this had root-mean-square errors 7% lower than the best of the ensemble members and 8% lower than the ensemble mean. Similar results were obtained for forecasts of sea level pressure. Simulation experiments show that BMA performs reasonably well when the underlying ensemble is calibrated, or even overdispersed.
    • Download: (717.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Using Bayesian Model Averaging to Calibrate Forecast Ensembles

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4228902
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorRaftery, Adrian E.
    contributor authorGneiting, Tilmann
    contributor authorBalabdaoui, Fadoua
    contributor authorPolakowski, Michael
    date accessioned2017-06-09T17:26:50Z
    date available2017-06-09T17:26:50Z
    date copyright2005/05/01
    date issued2005
    identifier issn0027-0644
    identifier otherams-85453.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4228902
    description abstractEnsembles used for probabilistic weather forecasting often exhibit a spread-error correlation, but they tend to be underdispersive. This paper proposes a statistical method for postprocessing ensembles based on Bayesian model averaging (BMA), which is a standard method for combining predictive distributions from different sources. The BMA predictive probability density function (PDF) of any quantity of interest is a weighted average of PDFs centered on the individual bias-corrected forecasts, where the weights are equal to posterior probabilities of the models generating the forecasts and reflect the models' relative contributions to predictive skill over the training period. The BMA weights can be used to assess the usefulness of ensemble members, and this can be used as a basis for selecting ensemble members; this can be useful given the cost of running large ensembles. The BMA PDF can be represented as an unweighted ensemble of any desired size, by simulating from the BMA predictive distribution. The BMA predictive variance can be decomposed into two components, one corresponding to the between-forecast variability, and the second to the within-forecast variability. Predictive PDFs or intervals based solely on the ensemble spread incorporate the first component but not the second. Thus BMA provides a theoretical explanation of the tendency of ensembles to exhibit a spread-error correlation but yet be underdispersive. The method was applied to 48-h forecasts of surface temperature in the Pacific Northwest in January?June 2000 using the University of Washington fifth-generation Pennsylvania State University?NCAR Mesoscale Model (MM5) ensemble. The predictive PDFs were much better calibrated than the raw ensemble, and the BMA forecasts were sharp in that 90% BMA prediction intervals were 66% shorter on average than those produced by sample climatology. As a by-product, BMA yields a deterministic point forecast, and this had root-mean-square errors 7% lower than the best of the ensemble members and 8% lower than the ensemble mean. Similar results were obtained for forecasts of sea level pressure. Simulation experiments show that BMA performs reasonably well when the underlying ensemble is calibrated, or even overdispersed.
    publisherAmerican Meteorological Society
    titleUsing Bayesian Model Averaging to Calibrate Forecast Ensembles
    typeJournal Paper
    journal volume133
    journal issue5
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR2906.1
    journal fristpage1155
    journal lastpage1174
    treeMonthly Weather Review:;2005:;volume( 133 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian