YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Case Study of an Intense African Easterly Wave

    Source: Monthly Weather Review:;2005:;volume( 133 ):;issue: 004::page 752
    Author:
    Berry, Gareth J.
    ,
    Thorncroft, Chris
    DOI: 10.1175/MWR2884.1
    Publisher: American Meteorological Society
    Abstract: The life cycle of an intense African easterly wave (AEW) over the African continent is examined using European Centre for Medium-Range Weather Forecasts (ECMWF) operational analyses, Meteosat satellite images, and synoptic observations. This system, the strongest AEW of 2000, can be tracked from central North Africa into the eastern Atlantic Ocean, where it is associated with the genesis of Hurricane Alberto. Synoptic analysis of the kinematic and thermodynamic fields is supplemented by analysis of potential vorticity (PV), allowing exploration at the role of multiple scales in the evolution of this AEW. The authors? analysis promotes the division of the AEW life cycle into three distinctive phases. (i) Initiation: The AEW development is preceded by a large convective event composed of several mesoscale convective systems over elevated terrain in Sudan. This convection provides a forcing on the baroclinically and barotropically unstable state that exists over tropical North Africa. (ii) Baroclinic growth: A low-level warm anomaly, generated close to the initial convection, interacts with a midtropospheric strip of high PV that exists on the cyclonic shear side of the African easterly jet, which is consistent with baroclinic growth. This interaction is reinforced by the generation of subsynoptic-scale PV anomalies by deep convection that is embedded within the baroclinic AEW structure. (iii) West coast development: Near the West African coast, the baroclinic structure weakens, but convection is maintained. The midtropospheric PV anomalies embedded within the AEW merge with one another and with PV anomalies that are generated by convection over topography ahead of the system. These mergers result in the production of a significant PV feature that leaves the West African coast and rapidly undergoes tropical cyclogenesis.
    • Download: (3.093Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Case Study of an Intense African Easterly Wave

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4228877
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorBerry, Gareth J.
    contributor authorThorncroft, Chris
    date accessioned2017-06-09T17:26:46Z
    date available2017-06-09T17:26:46Z
    date copyright2005/04/01
    date issued2005
    identifier issn0027-0644
    identifier otherams-85431.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4228877
    description abstractThe life cycle of an intense African easterly wave (AEW) over the African continent is examined using European Centre for Medium-Range Weather Forecasts (ECMWF) operational analyses, Meteosat satellite images, and synoptic observations. This system, the strongest AEW of 2000, can be tracked from central North Africa into the eastern Atlantic Ocean, where it is associated with the genesis of Hurricane Alberto. Synoptic analysis of the kinematic and thermodynamic fields is supplemented by analysis of potential vorticity (PV), allowing exploration at the role of multiple scales in the evolution of this AEW. The authors? analysis promotes the division of the AEW life cycle into three distinctive phases. (i) Initiation: The AEW development is preceded by a large convective event composed of several mesoscale convective systems over elevated terrain in Sudan. This convection provides a forcing on the baroclinically and barotropically unstable state that exists over tropical North Africa. (ii) Baroclinic growth: A low-level warm anomaly, generated close to the initial convection, interacts with a midtropospheric strip of high PV that exists on the cyclonic shear side of the African easterly jet, which is consistent with baroclinic growth. This interaction is reinforced by the generation of subsynoptic-scale PV anomalies by deep convection that is embedded within the baroclinic AEW structure. (iii) West coast development: Near the West African coast, the baroclinic structure weakens, but convection is maintained. The midtropospheric PV anomalies embedded within the AEW merge with one another and with PV anomalies that are generated by convection over topography ahead of the system. These mergers result in the production of a significant PV feature that leaves the West African coast and rapidly undergoes tropical cyclogenesis.
    publisherAmerican Meteorological Society
    titleCase Study of an Intense African Easterly Wave
    typeJournal Paper
    journal volume133
    journal issue4
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR2884.1
    journal fristpage752
    journal lastpage766
    treeMonthly Weather Review:;2005:;volume( 133 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian