YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Vertical Structure of Midlatitude Analysis and Forecast Errors

    Source: Monthly Weather Review:;2005:;volume( 133 ):;issue: 003::page 567
    Author:
    Hakim, Gregory J.
    DOI: 10.1175/MWR-2882.1
    Publisher: American Meteorological Society
    Abstract: The dominant vertical structures for analysis and forecast errors are estimated in midlatitudes using a small ensemble of operational analyses. Errors for fixed locations in the central North Pacific and eastern North America are selected for comparing errors in regions with relatively low and high observation density, respectively. Results for these fixed locations are compared with results for zonal wavenumber 9, which provides a representative sample of baroclinic waves. This study focuses on deviations from the ensemble mean for meridional wind and temperature at 40°N; these quantities are chosen for simplicity and because they capture dynamical and thermodynamical aspects of midlatitude baroclinic waves. Results for the meridional wind show that analysis and forecast errors share the same dominant vertical structure as the analyses. This structure peaks near the tropopause and decays smoothly toward small values in the middle and lower troposphere. The dominant vertical structure for analysis errors exhibits upshear tilt and peaks just below the tropopause, suggesting an asymmetry in errors of the tropopause location, with a bias toward greater errors for downward tropopause displacements. The dominant vertical structure for temperature analysis errors is distinctly different from temperature analyses. Analysis errors have a sharp peak in the lower troposphere, with a secondary structure near the tropopause, whereas forecast errors and analyses show a dipole straddling the tropopause and smooth vertical structure, consistent with potential vorticity anomalies due to variance in tropopause position. Linear regression of forecast errors onto analysis errors for the western North Pacific is used to assess the nonseparable zonal-height structure of errors and their propagation. Analysis errors near the tropopause rapidly develop into a spreading wave packet, with a group speed that matches the mean zonal wind speed of 31 m s?1. A complementary calculation for the regression of 24-h forecast errors onto analysis errors shows that forecast errors originate from analysis errors in the middle and upper troposphere. These errors rapidly expand in the vertical to span the troposphere, with a peak at the tropopause.
    • Download: (544.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Vertical Structure of Midlatitude Analysis and Forecast Errors

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4228876
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorHakim, Gregory J.
    date accessioned2017-06-09T17:26:46Z
    date available2017-06-09T17:26:46Z
    date copyright2005/03/01
    date issued2005
    identifier issn0027-0644
    identifier otherams-85430.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4228876
    description abstractThe dominant vertical structures for analysis and forecast errors are estimated in midlatitudes using a small ensemble of operational analyses. Errors for fixed locations in the central North Pacific and eastern North America are selected for comparing errors in regions with relatively low and high observation density, respectively. Results for these fixed locations are compared with results for zonal wavenumber 9, which provides a representative sample of baroclinic waves. This study focuses on deviations from the ensemble mean for meridional wind and temperature at 40°N; these quantities are chosen for simplicity and because they capture dynamical and thermodynamical aspects of midlatitude baroclinic waves. Results for the meridional wind show that analysis and forecast errors share the same dominant vertical structure as the analyses. This structure peaks near the tropopause and decays smoothly toward small values in the middle and lower troposphere. The dominant vertical structure for analysis errors exhibits upshear tilt and peaks just below the tropopause, suggesting an asymmetry in errors of the tropopause location, with a bias toward greater errors for downward tropopause displacements. The dominant vertical structure for temperature analysis errors is distinctly different from temperature analyses. Analysis errors have a sharp peak in the lower troposphere, with a secondary structure near the tropopause, whereas forecast errors and analyses show a dipole straddling the tropopause and smooth vertical structure, consistent with potential vorticity anomalies due to variance in tropopause position. Linear regression of forecast errors onto analysis errors for the western North Pacific is used to assess the nonseparable zonal-height structure of errors and their propagation. Analysis errors near the tropopause rapidly develop into a spreading wave packet, with a group speed that matches the mean zonal wind speed of 31 m s?1. A complementary calculation for the regression of 24-h forecast errors onto analysis errors shows that forecast errors originate from analysis errors in the middle and upper troposphere. These errors rapidly expand in the vertical to span the troposphere, with a peak at the tropopause.
    publisherAmerican Meteorological Society
    titleVertical Structure of Midlatitude Analysis and Forecast Errors
    typeJournal Paper
    journal volume133
    journal issue3
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-2882.1
    journal fristpage567
    journal lastpage578
    treeMonthly Weather Review:;2005:;volume( 133 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian