YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The 30 May 1998 Spencer, South Dakota, Storm. Part II: Comparison of Observed Damage and Radar-Derived Winds in the Tornadoes

    Source: Monthly Weather Review:;2005:;volume( 133 ):;issue: 001::page 97
    Author:
    Wurman, Joshua
    ,
    Alexander, Curtis R.
    DOI: 10.1175/MWR-2856.1
    Publisher: American Meteorological Society
    Abstract: A violent supercell tornado passed through the town of Spencer, South Dakota, on the evening of 30 May 1998 producing large gradients in damage severity. The tornado was rated at F4 intensity by damage survey teams. A Doppler On Wheels (DOW) mobile radar followed this tornado and observed the tornado at ranges between 1.7 and 8.0 km during various stages of the tornado's life. The DOW was deployed less than 4.0 km from the town of Spencer between 0134 and 0145 UTC, and during this time period, the tornado passed through Spencer, and peak Doppler velocity measurements exceeded 100 m s?1. Data gathered from the DOW during this time period contained high spatial resolution sample volumes of approximately 34 m ? 34 m ? 37 m along with frequent volume updates every 45?50 s. The high-resolution Doppler velocity data gathered from low-level elevation scans, when sample volumes are between 20 and 40 m AGL, are compared to extensive ground and aerial damage surveys performed by the National Weather Service (NWS) and the National Institute of Standards and Technology (NIST). Idealized radial profiles of tangential velocity are computed by fitting a model of an axisymmetric translating vortex to the Doppler radar observations, which compensates for velocity components perpendicular to the radar beam as well as the translational motion of the tornado vortex. Both the original single-Doppler velocity data and the interpolated velocity fields are compared with damage survey Fujita scale (F-scale) estimates throughout the town of Spencer. This comparison on a structure-by-structure basis revealed that radar-based estimates of the F-scale intensity usually exceeded the damage-survey-based F-scale both inside and outside the town of Spencer. In the town of Spencer, the radar-based wind field revealed two distinct velocity time series inside and outside the passage of the core-flow region. The center of the core-flow region tracked about 50 m farther north than the damage survey indicated because of the asymmetry induced by the 15 m s?1 translational motion of the tornado. The radar consistently measured the strongest winds in the lowest 200 m AGL with the most extreme Doppler velocities residing within 50 m AGL. Alternate measures of tornado wind field intensity that incorporated the effects of the duration of the extreme winds and debris were explored. It is suggested that damage may not be a simple function of peak wind gust and structural integrity, but that the duration of intense winds, directional changes, accelerations, and upwind debris loading may be critical factors.
    • Download: (2.544Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The 30 May 1998 Spencer, South Dakota, Storm. Part II: Comparison of Observed Damage and Radar-Derived Winds in the Tornadoes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4228848
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorWurman, Joshua
    contributor authorAlexander, Curtis R.
    date accessioned2017-06-09T17:26:43Z
    date available2017-06-09T17:26:43Z
    date copyright2005/01/01
    date issued2005
    identifier issn0027-0644
    identifier otherams-85404.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4228848
    description abstractA violent supercell tornado passed through the town of Spencer, South Dakota, on the evening of 30 May 1998 producing large gradients in damage severity. The tornado was rated at F4 intensity by damage survey teams. A Doppler On Wheels (DOW) mobile radar followed this tornado and observed the tornado at ranges between 1.7 and 8.0 km during various stages of the tornado's life. The DOW was deployed less than 4.0 km from the town of Spencer between 0134 and 0145 UTC, and during this time period, the tornado passed through Spencer, and peak Doppler velocity measurements exceeded 100 m s?1. Data gathered from the DOW during this time period contained high spatial resolution sample volumes of approximately 34 m ? 34 m ? 37 m along with frequent volume updates every 45?50 s. The high-resolution Doppler velocity data gathered from low-level elevation scans, when sample volumes are between 20 and 40 m AGL, are compared to extensive ground and aerial damage surveys performed by the National Weather Service (NWS) and the National Institute of Standards and Technology (NIST). Idealized radial profiles of tangential velocity are computed by fitting a model of an axisymmetric translating vortex to the Doppler radar observations, which compensates for velocity components perpendicular to the radar beam as well as the translational motion of the tornado vortex. Both the original single-Doppler velocity data and the interpolated velocity fields are compared with damage survey Fujita scale (F-scale) estimates throughout the town of Spencer. This comparison on a structure-by-structure basis revealed that radar-based estimates of the F-scale intensity usually exceeded the damage-survey-based F-scale both inside and outside the town of Spencer. In the town of Spencer, the radar-based wind field revealed two distinct velocity time series inside and outside the passage of the core-flow region. The center of the core-flow region tracked about 50 m farther north than the damage survey indicated because of the asymmetry induced by the 15 m s?1 translational motion of the tornado. The radar consistently measured the strongest winds in the lowest 200 m AGL with the most extreme Doppler velocities residing within 50 m AGL. Alternate measures of tornado wind field intensity that incorporated the effects of the duration of the extreme winds and debris were explored. It is suggested that damage may not be a simple function of peak wind gust and structural integrity, but that the duration of intense winds, directional changes, accelerations, and upwind debris loading may be critical factors.
    publisherAmerican Meteorological Society
    titleThe 30 May 1998 Spencer, South Dakota, Storm. Part II: Comparison of Observed Damage and Radar-Derived Winds in the Tornadoes
    typeJournal Paper
    journal volume133
    journal issue1
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-2856.1
    journal fristpage97
    journal lastpage119
    treeMonthly Weather Review:;2005:;volume( 133 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian