The Use of Ship-Launched Fixed-Wing UAVs for Measuring the Marine Atmospheric Boundary Layer and Ocean Surface ProcessesSource: Journal of Atmospheric and Oceanic Technology:;2016:;volume( 033 ):;issue: 009::page 2029DOI: 10.1175/JTECH-D-15-0019.1Publisher: American Meteorological Society
Abstract: he deployment and recovery of autonomous or remotely piloted platforms from research vessels have become a way of significantly extending the capabilities and reach of the research fleet. This paper describes the use of ship-launched and ship-recovered Boeing?Insitu ScanEagle unmanned aerial vehicles (UAVs). The UAVs were instrumented to characterize the marine atmospheric boundary layer (MABL) structure and dynamics, and to measure ocean surface processes during the October 2012 Equatorial Mixing (EquatorMix) experiment in the central Pacific and during the July 2013 Trident Warrior experiment off the Virginia coast. The UAV measurements, including atmospheric momentum and radiative, sensible, and latent heat fluxes, are complemented by measurements from ship-based instrumentation, including a foremast MABL eddy-covariance system, lidar altimeters, and a digitized X-band radar system. During EquatorMix, UAV measurements reveal longitudinal atmospheric roll structures not sampled by ship measurements, which contribute significantly to vertical fluxes of heat and momentum. With the nadir-looking UAV lidar, surface signatures of internal waves are observed, consistent and coherent with measurements from ship-based X-band radar, a Hydrographic Doppler Sonar System, and a theoretical model. In the Trident Warrior experiment, the instrumented UAVs were used to demonstrate real-time data assimilation of meteorological data from UAVs into regional coupled ocean?atmosphere models. The instrumented UAVs have provided unprecedented spatiotemporal resolution in atmospheric and oceanographic measurements in remote ocean locations, demonstrating the capabilities of these platforms to extend the range and capabilities of the research fleet for oceanographic and atmospheric studies.
|
Collections
Show full item record
| contributor author | Reineman, Benjamin D. | |
| contributor author | Lenain, Luc | |
| contributor author | Melville, W. Kendall | |
| date accessioned | 2017-06-09T17:26:09Z | |
| date available | 2017-06-09T17:26:09Z | |
| date copyright | 2016/09/01 | |
| date issued | 2016 | |
| identifier issn | 0739-0572 | |
| identifier other | ams-85218.pdf | |
| identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4228641 | |
| description abstract | he deployment and recovery of autonomous or remotely piloted platforms from research vessels have become a way of significantly extending the capabilities and reach of the research fleet. This paper describes the use of ship-launched and ship-recovered Boeing?Insitu ScanEagle unmanned aerial vehicles (UAVs). The UAVs were instrumented to characterize the marine atmospheric boundary layer (MABL) structure and dynamics, and to measure ocean surface processes during the October 2012 Equatorial Mixing (EquatorMix) experiment in the central Pacific and during the July 2013 Trident Warrior experiment off the Virginia coast. The UAV measurements, including atmospheric momentum and radiative, sensible, and latent heat fluxes, are complemented by measurements from ship-based instrumentation, including a foremast MABL eddy-covariance system, lidar altimeters, and a digitized X-band radar system. During EquatorMix, UAV measurements reveal longitudinal atmospheric roll structures not sampled by ship measurements, which contribute significantly to vertical fluxes of heat and momentum. With the nadir-looking UAV lidar, surface signatures of internal waves are observed, consistent and coherent with measurements from ship-based X-band radar, a Hydrographic Doppler Sonar System, and a theoretical model. In the Trident Warrior experiment, the instrumented UAVs were used to demonstrate real-time data assimilation of meteorological data from UAVs into regional coupled ocean?atmosphere models. The instrumented UAVs have provided unprecedented spatiotemporal resolution in atmospheric and oceanographic measurements in remote ocean locations, demonstrating the capabilities of these platforms to extend the range and capabilities of the research fleet for oceanographic and atmospheric studies. | |
| publisher | American Meteorological Society | |
| title | The Use of Ship-Launched Fixed-Wing UAVs for Measuring the Marine Atmospheric Boundary Layer and Ocean Surface Processes | |
| type | Journal Paper | |
| journal volume | 33 | |
| journal issue | 9 | |
| journal title | Journal of Atmospheric and Oceanic Technology | |
| identifier doi | 10.1175/JTECH-D-15-0019.1 | |
| journal fristpage | 2029 | |
| journal lastpage | 2052 | |
| tree | Journal of Atmospheric and Oceanic Technology:;2016:;volume( 033 ):;issue: 009 | |
| contenttype | Fulltext |