contributor author | Zeng, Xiangming | |
contributor author | Li, Yizhen | |
contributor author | He, Ruoying | |
date accessioned | 2017-06-09T17:26:01Z | |
date available | 2017-06-09T17:26:01Z | |
date copyright | 2015/05/01 | |
date issued | 2015 | |
identifier issn | 0739-0572 | |
identifier other | ams-85176.pdf | |
identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4228594 | |
description abstract | novel approach based on an artificial neural network was used to forecast sea surface height (SSH) in the Gulf of Mexico (GoM) in order to predict Loop Current variation and its eddy shedding process. The empirical orthogonal function analysis method was applied to decompose long-term satellite-observed SSH into spatial patterns (EOFs) and time-dependent principal components (PCs). The nonlinear autoregressive network was then developed to predict major PCs of the GoM SSH in the future. The prediction of SSH in the GoM was constructed by multiplying the EOFs and predicted PCs. Model sensitivity experiments were conducted to determine the optimal number of PCs. Validations against independent satellite observations indicate that the neural network?based model can reliably predict Loop Current variations and its eddy shedding process for a 4-week period. In some cases, an accurate forecast for 5?6 weeks is possible. | |
publisher | American Meteorological Society | |
title | Predictability of the Loop Current Variation and Eddy Shedding Process in the Gulf of Mexico Using an Artificial Neural Network Approach | |
type | Journal Paper | |
journal volume | 32 | |
journal issue | 5 | |
journal title | Journal of Atmospheric and Oceanic Technology | |
identifier doi | 10.1175/JTECH-D-14-00176.1 | |
journal fristpage | 1098 | |
journal lastpage | 1111 | |
tree | Journal of Atmospheric and Oceanic Technology:;2015:;volume( 032 ):;issue: 005 | |
contenttype | Fulltext | |