YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Observational Perspectives from U.S. Climate Reference Network (USCRN) and Cooperative Observer Program (COOP) Network: Temperature and Precipitation Comparison

    Source: Journal of Atmospheric and Oceanic Technology:;2015:;volume( 032 ):;issue: 004::page 703
    Author:
    Leeper, Ronald D.
    ,
    Rennie, Jared
    ,
    Palecki, Michael A.
    DOI: 10.1175/JTECH-D-14-00172.1
    Publisher: American Meteorological Society
    Abstract: he U.S. Cooperative Observer Program (COOP) network was formed in the early 1890s to provide daily observations of temperature and precipitation. However, manual observations from naturally aspirated temperature sensors and unshielded precipitation gauges often led to uncertainties in atmospheric measurements. Advancements in observational technology (ventilated temperature sensors, well-shielded precipitation gauges) and measurement techniques (automation and redundant sensors), which improve observation quality, were adopted by NOAA?s National Climatic Data Center (NCDC) into the establishment of the U.S. Climate Reference Network (USCRN). USCRN was designed to provide high-quality and continuous observations to monitor long-term temperature and precipitation trends, and to provide an independent reference to compare to other networks. The purpose of this study is to evaluate how diverse technological and operational choices between the USCRN and COOP programs impact temperature and precipitation observations. Naturally aspirated COOP sensors generally had warmer (+0.48°C) daily maximum and cooler (?0.36°C) minimum temperatures than USCRN, with considerable variability among stations. For precipitation, COOP reported slightly more precipitation overall (1.5%) with network differences varying seasonally. COOP gauges were sensitive to wind biases (no shielding), which are enhanced over winter when COOP observed (10.7%) less precipitation than USCRN. Conversely, wetting factor and gauge evaporation, which dominate in summer, were sources of bias for USCRN, leading to wetter COOP observations over warmer months. Inconsistencies in COOP observations (e.g., multiday observations, time shifts, recording errors) complicated network comparisons and led to unique bias profiles that evolved over time with changes in instrumentation and primary observer.
    • Download: (2.133Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Observational Perspectives from U.S. Climate Reference Network (USCRN) and Cooperative Observer Program (COOP) Network: Temperature and Precipitation Comparison

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4228591
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorLeeper, Ronald D.
    contributor authorRennie, Jared
    contributor authorPalecki, Michael A.
    date accessioned2017-06-09T17:26:01Z
    date available2017-06-09T17:26:01Z
    date copyright2015/04/01
    date issued2015
    identifier issn0739-0572
    identifier otherams-85173.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4228591
    description abstracthe U.S. Cooperative Observer Program (COOP) network was formed in the early 1890s to provide daily observations of temperature and precipitation. However, manual observations from naturally aspirated temperature sensors and unshielded precipitation gauges often led to uncertainties in atmospheric measurements. Advancements in observational technology (ventilated temperature sensors, well-shielded precipitation gauges) and measurement techniques (automation and redundant sensors), which improve observation quality, were adopted by NOAA?s National Climatic Data Center (NCDC) into the establishment of the U.S. Climate Reference Network (USCRN). USCRN was designed to provide high-quality and continuous observations to monitor long-term temperature and precipitation trends, and to provide an independent reference to compare to other networks. The purpose of this study is to evaluate how diverse technological and operational choices between the USCRN and COOP programs impact temperature and precipitation observations. Naturally aspirated COOP sensors generally had warmer (+0.48°C) daily maximum and cooler (?0.36°C) minimum temperatures than USCRN, with considerable variability among stations. For precipitation, COOP reported slightly more precipitation overall (1.5%) with network differences varying seasonally. COOP gauges were sensitive to wind biases (no shielding), which are enhanced over winter when COOP observed (10.7%) less precipitation than USCRN. Conversely, wetting factor and gauge evaporation, which dominate in summer, were sources of bias for USCRN, leading to wetter COOP observations over warmer months. Inconsistencies in COOP observations (e.g., multiday observations, time shifts, recording errors) complicated network comparisons and led to unique bias profiles that evolved over time with changes in instrumentation and primary observer.
    publisherAmerican Meteorological Society
    titleObservational Perspectives from U.S. Climate Reference Network (USCRN) and Cooperative Observer Program (COOP) Network: Temperature and Precipitation Comparison
    typeJournal Paper
    journal volume32
    journal issue4
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/JTECH-D-14-00172.1
    journal fristpage703
    journal lastpage721
    treeJournal of Atmospheric and Oceanic Technology:;2015:;volume( 032 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian