YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A New Cloud Screening Algorithm for Ground-Based Direct-Beam Solar Radiation

    Source: Journal of Atmospheric and Oceanic Technology:;2014:;volume( 031 ):;issue: 012::page 2591
    Author:
    Chen, Maosi
    ,
    Davis, John
    ,
    Gao, Wei
    DOI: 10.1175/JTECH-D-14-00095.1
    Publisher: American Meteorological Society
    Abstract: loud screening of direct-beam solar radiation is an essential step for in situ calibration and atmospheric properties retrieval. The internal cloud screening module of a Langley analysis program [Langley Analyzer (LA)] used by the U.S. Department of Agriculture (USDA) UV-B Monitoring and Research Program (UVMRP) is used for screening the uncalibrated direct-beam measurements and for deriving Langley offset voltages for calibration of the UV version of the Multifilter Rotating Shadowband Radiometer (UV-MFRSR). The current LA cloud screening module utilizes data from extended clear-sky periods and tends to ignore shorter periods that typify periods of broken cloudiness, and as a result, fewer values are generated for sites with higher frequencies of cloudy days (cloudy sites). A new cloud screening algorithm is presented that calculates the total optical depth (TOD) difference between a target point and pairs of points, and identifies the target as cloudy if the mean TOD difference exceeds a certain threshold. The screening is an iterative process that finishes when no new cloudy points are found. The result at a typical clear/sunny site shows that values from partly cloudy days are consistent with those from cloud-free days, when the new method is employed. The new cloud screening algorithm picks up significantly more values at cloudy sites. The larger decrease of the annual mean value of at cloudy sites than at relatively clear sites suggests the potential for improving calibration accuracy at cloudy sites. The results also show that the new cloud screening method is capable of detecting clear points in short clear windows and in transitional regions.
    • Download: (1.579Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A New Cloud Screening Algorithm for Ground-Based Direct-Beam Solar Radiation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4228538
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorChen, Maosi
    contributor authorDavis, John
    contributor authorGao, Wei
    date accessioned2017-06-09T17:25:53Z
    date available2017-06-09T17:25:53Z
    date copyright2014/12/01
    date issued2014
    identifier issn0739-0572
    identifier otherams-85125.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4228538
    description abstractloud screening of direct-beam solar radiation is an essential step for in situ calibration and atmospheric properties retrieval. The internal cloud screening module of a Langley analysis program [Langley Analyzer (LA)] used by the U.S. Department of Agriculture (USDA) UV-B Monitoring and Research Program (UVMRP) is used for screening the uncalibrated direct-beam measurements and for deriving Langley offset voltages for calibration of the UV version of the Multifilter Rotating Shadowband Radiometer (UV-MFRSR). The current LA cloud screening module utilizes data from extended clear-sky periods and tends to ignore shorter periods that typify periods of broken cloudiness, and as a result, fewer values are generated for sites with higher frequencies of cloudy days (cloudy sites). A new cloud screening algorithm is presented that calculates the total optical depth (TOD) difference between a target point and pairs of points, and identifies the target as cloudy if the mean TOD difference exceeds a certain threshold. The screening is an iterative process that finishes when no new cloudy points are found. The result at a typical clear/sunny site shows that values from partly cloudy days are consistent with those from cloud-free days, when the new method is employed. The new cloud screening algorithm picks up significantly more values at cloudy sites. The larger decrease of the annual mean value of at cloudy sites than at relatively clear sites suggests the potential for improving calibration accuracy at cloudy sites. The results also show that the new cloud screening method is capable of detecting clear points in short clear windows and in transitional regions.
    publisherAmerican Meteorological Society
    titleA New Cloud Screening Algorithm for Ground-Based Direct-Beam Solar Radiation
    typeJournal Paper
    journal volume31
    journal issue12
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/JTECH-D-14-00095.1
    journal fristpage2591
    journal lastpage2605
    treeJournal of Atmospheric and Oceanic Technology:;2014:;volume( 031 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian