YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Estimation of Winds from GPS Radio Occultations

    Source: Journal of Atmospheric and Oceanic Technology:;2014:;volume( 031 ):;issue: 011::page 2451
    Author:
    Verkhoglyadova, Olga P.
    ,
    Leroy, Stephen S.
    ,
    Ao, Chi O.
    DOI: 10.1175/JTECH-D-14-00061.1
    Publisher: American Meteorological Society
    Abstract: PS radio occultations (RO) offer the possibility to map winds in the upper troposphere and lower stratosphere (UTLS) region because geopotential height is the independent coordinate of retrieval. Most other sounders do not offer this possibility because their independent coordinate of retrieval is pressure. To estimate the precision with which GPS radio occultation data can map winds, dry pressure profiles are simulated from the Interim European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-Interim) at the actual locations of the Challenging Minisatellite Payload (CHAMP) and the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) soundings for the year 2007. Monthly wind maps were created by using Bayesian interpolation on subsampled ERA-Interim data in 3?5-day bins and subsequent averaging over a month. Mapping winds in this approach requires that 1) geostrophy approximates winds; 2) dry pressure approximates pressure in the UTLS; and 3) geopotential height can be mapped accurately given sparse, nonuniform distributions of data. This study found that, under these conditions, it is possible to map monthly winds near the tropopause with an accuracy of 5.6 m s?1 with CHAMP alone and 4.5 m s?1 with COSMIC alone. The dominant contributors to uncertainty are undersampling of the atmosphere and ageostrophy, particularly at the leading and trailing edges of the subtropical jet. The former is reduced with increased density of GPS RO soundings. The latter cannot be reduced even after iteration for balanced winds. Nevertheless, it is still possible to capture the general wind pattern and to determine the position of the subtropical jet despite the uncertainty in its magnitude. COSMIC radio occultation measurements from 2006 through 2011 were used to estimate monthly geostrophic winds maps in UTLS. The resultant wind dataset is posted online.
    • Download: (9.970Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Estimation of Winds from GPS Radio Occultations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4228513
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorVerkhoglyadova, Olga P.
    contributor authorLeroy, Stephen S.
    contributor authorAo, Chi O.
    date accessioned2017-06-09T17:25:47Z
    date available2017-06-09T17:25:47Z
    date copyright2014/11/01
    date issued2014
    identifier issn0739-0572
    identifier otherams-85102.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4228513
    description abstractPS radio occultations (RO) offer the possibility to map winds in the upper troposphere and lower stratosphere (UTLS) region because geopotential height is the independent coordinate of retrieval. Most other sounders do not offer this possibility because their independent coordinate of retrieval is pressure. To estimate the precision with which GPS radio occultation data can map winds, dry pressure profiles are simulated from the Interim European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-Interim) at the actual locations of the Challenging Minisatellite Payload (CHAMP) and the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) soundings for the year 2007. Monthly wind maps were created by using Bayesian interpolation on subsampled ERA-Interim data in 3?5-day bins and subsequent averaging over a month. Mapping winds in this approach requires that 1) geostrophy approximates winds; 2) dry pressure approximates pressure in the UTLS; and 3) geopotential height can be mapped accurately given sparse, nonuniform distributions of data. This study found that, under these conditions, it is possible to map monthly winds near the tropopause with an accuracy of 5.6 m s?1 with CHAMP alone and 4.5 m s?1 with COSMIC alone. The dominant contributors to uncertainty are undersampling of the atmosphere and ageostrophy, particularly at the leading and trailing edges of the subtropical jet. The former is reduced with increased density of GPS RO soundings. The latter cannot be reduced even after iteration for balanced winds. Nevertheless, it is still possible to capture the general wind pattern and to determine the position of the subtropical jet despite the uncertainty in its magnitude. COSMIC radio occultation measurements from 2006 through 2011 were used to estimate monthly geostrophic winds maps in UTLS. The resultant wind dataset is posted online.
    publisherAmerican Meteorological Society
    titleEstimation of Winds from GPS Radio Occultations
    typeJournal Paper
    journal volume31
    journal issue11
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/JTECH-D-14-00061.1
    journal fristpage2451
    journal lastpage2461
    treeJournal of Atmospheric and Oceanic Technology:;2014:;volume( 031 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian