An Assessment of SAPHIR Calibration Using Quality Tropical SoundingsSource: Journal of Atmospheric and Oceanic Technology:;2014:;volume( 032 ):;issue: 001::page 61DOI: 10.1175/JTECH-D-14-00054.1Publisher: American Meteorological Society
Abstract: he Sondeur Atmosphérique du Profil d?Humidité Intertropicale par Radiométrie (SAPHIR) instrument on board the Megha-Tropiques (MT) platform is a cross-track, multichannel microwave humidity sounder with six channels near the 183.31-GHz water vapor absorption line, a maximum scan angle of 42.96° (resulting in a maximum incidence angle of 50.7°), a 1700-km-wide swath, and a footprint resolution of 10 km at nadir. SAPHIR L1A2 brightness temperature (BT) observations have been compared to BTs simulated by the radiative transfer model (RTM) Radiative Transfer for the Television and Infrared Observation Satellite (TIROS) Operational Vertical Sounder (RTTOV-10), using in situ measurements from radiosondes as input. Selected radiosonde humidity observations from the Cooperative Indian Ocean Experiment on Intraseasonal Variability in the Year (CINDY)?Dynamics of the Madden?Julian Oscillation (DYNAMO) campaign (September 2011?March 2012) were spatiotemporally collocated with MT overpasses. Although several sonde systems were used during the campaign, all of the sites selected for this study used the Vaisala RS92-SGPD system and were chosen in order to avoid discrepancies in data quality and biases.To interpret the results of the comparison between the sensor data and the RTM simulations, uncertainties associated with the data processing must be propagated throughout the evaluation. The magnitude of the bias was found to be dependent on the observing channel, increasing from 0.18 K for the 183.31 ± 0.2-GHz channel to 2.3 K for the 183.31 ± 11-GHz channel. Uncertainties and errors that could impact the BT biases were investigated. These can be linked to the RTM input and design, the radiosonde observations, the chosen methodology of comparison, and the SAPHIR instrument itself.
|
Collections
Show full item record
contributor author | Clain, G. | |
contributor author | Brogniez, H. | |
contributor author | Payne, V. H. | |
contributor author | John, V. O. | |
contributor author | Luo, M. | |
date accessioned | 2017-06-09T17:25:46Z | |
date available | 2017-06-09T17:25:46Z | |
date copyright | 2015/01/01 | |
date issued | 2014 | |
identifier issn | 0739-0572 | |
identifier other | ams-85097.pdf | |
identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4228506 | |
description abstract | he Sondeur Atmosphérique du Profil d?Humidité Intertropicale par Radiométrie (SAPHIR) instrument on board the Megha-Tropiques (MT) platform is a cross-track, multichannel microwave humidity sounder with six channels near the 183.31-GHz water vapor absorption line, a maximum scan angle of 42.96° (resulting in a maximum incidence angle of 50.7°), a 1700-km-wide swath, and a footprint resolution of 10 km at nadir. SAPHIR L1A2 brightness temperature (BT) observations have been compared to BTs simulated by the radiative transfer model (RTM) Radiative Transfer for the Television and Infrared Observation Satellite (TIROS) Operational Vertical Sounder (RTTOV-10), using in situ measurements from radiosondes as input. Selected radiosonde humidity observations from the Cooperative Indian Ocean Experiment on Intraseasonal Variability in the Year (CINDY)?Dynamics of the Madden?Julian Oscillation (DYNAMO) campaign (September 2011?March 2012) were spatiotemporally collocated with MT overpasses. Although several sonde systems were used during the campaign, all of the sites selected for this study used the Vaisala RS92-SGPD system and were chosen in order to avoid discrepancies in data quality and biases.To interpret the results of the comparison between the sensor data and the RTM simulations, uncertainties associated with the data processing must be propagated throughout the evaluation. The magnitude of the bias was found to be dependent on the observing channel, increasing from 0.18 K for the 183.31 ± 0.2-GHz channel to 2.3 K for the 183.31 ± 11-GHz channel. Uncertainties and errors that could impact the BT biases were investigated. These can be linked to the RTM input and design, the radiosonde observations, the chosen methodology of comparison, and the SAPHIR instrument itself. | |
publisher | American Meteorological Society | |
title | An Assessment of SAPHIR Calibration Using Quality Tropical Soundings | |
type | Journal Paper | |
journal volume | 32 | |
journal issue | 1 | |
journal title | Journal of Atmospheric and Oceanic Technology | |
identifier doi | 10.1175/JTECH-D-14-00054.1 | |
journal fristpage | 61 | |
journal lastpage | 78 | |
tree | Journal of Atmospheric and Oceanic Technology:;2014:;volume( 032 ):;issue: 001 | |
contenttype | Fulltext |