YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Accuracy Progressive Calculation of Lagrangian Trajectories from a Gridded Velocity Field

    Source: Journal of Atmospheric and Oceanic Technology:;2014:;volume( 031 ):;issue: 007::page 1615
    Author:
    Chu, Peter C.
    ,
    Fan, Chenwu
    DOI: 10.1175/JTECH-D-13-00204.1
    Publisher: American Meteorological Society
    Abstract: eduction of computational error is a key issue in computing Lagrangian trajectories using gridded velocities. Computational accuracy enhances from using the first term (constant velocity scheme), the first two terms (linear uncoupled scheme), the first three terms (linear coupled scheme), to using all four terms (nonlinear coupled scheme) of the two-dimensional interpolation. A unified ?analytical form? is presented in this study for different truncations. Ordinary differential equations for predicting Lagrangian trajectory are linear using the constant velocity/linear uncoupled schemes (both commonly used in atmospheric and ocean modeling), the linear coupled scheme, and the nonlinear using the nonlinear coupled scheme (both proposed in this paper). The location of the Lagrangian drifter inside the grid cell is determined by two algebraic equations that are solved explicitly with the constant velocity/linear uncoupled schemes, and implicitly using the Newton?Raphson iteration method with the linear/nonlinear coupled schemes. The analytical Stommel ocean model on the f plane is used to illustrate great accuracy improvement from keeping the first term to keeping all the terms of the two-dimensional interpolation.
    • Download: (1.025Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Accuracy Progressive Calculation of Lagrangian Trajectories from a Gridded Velocity Field

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4228414
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorChu, Peter C.
    contributor authorFan, Chenwu
    date accessioned2017-06-09T17:25:32Z
    date available2017-06-09T17:25:32Z
    date copyright2014/07/01
    date issued2014
    identifier issn0739-0572
    identifier otherams-85013.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4228414
    description abstracteduction of computational error is a key issue in computing Lagrangian trajectories using gridded velocities. Computational accuracy enhances from using the first term (constant velocity scheme), the first two terms (linear uncoupled scheme), the first three terms (linear coupled scheme), to using all four terms (nonlinear coupled scheme) of the two-dimensional interpolation. A unified ?analytical form? is presented in this study for different truncations. Ordinary differential equations for predicting Lagrangian trajectory are linear using the constant velocity/linear uncoupled schemes (both commonly used in atmospheric and ocean modeling), the linear coupled scheme, and the nonlinear using the nonlinear coupled scheme (both proposed in this paper). The location of the Lagrangian drifter inside the grid cell is determined by two algebraic equations that are solved explicitly with the constant velocity/linear uncoupled schemes, and implicitly using the Newton?Raphson iteration method with the linear/nonlinear coupled schemes. The analytical Stommel ocean model on the f plane is used to illustrate great accuracy improvement from keeping the first term to keeping all the terms of the two-dimensional interpolation.
    publisherAmerican Meteorological Society
    titleAccuracy Progressive Calculation of Lagrangian Trajectories from a Gridded Velocity Field
    typeJournal Paper
    journal volume31
    journal issue7
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/JTECH-D-13-00204.1
    journal fristpage1615
    journal lastpage1627
    treeJournal of Atmospheric and Oceanic Technology:;2014:;volume( 031 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian