YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Underwater Glider Reliability and Implications for Survey Design

    Source: Journal of Atmospheric and Oceanic Technology:;2014:;volume( 031 ):;issue: 012::page 2858
    Author:
    Brito, Mario
    ,
    Smeed, David
    ,
    Griffiths, Gwyn
    DOI: 10.1175/JTECH-D-13-00138.1
    Publisher: American Meteorological Society
    Abstract: t has been 20 years since the concept of the Autonomous Ocean Sampling Network (AOSN) was first introduced. This vision has been brought closer to reality with the introduction of underwater gliders. While in terms of functionality the underwater glider has shown to be capable of meeting the AOSN vision, in terms of reliability there is no communitywide hard evidence on whether persistent presence is currently being achieved. This paper studies the reliability of underwater gliders in order to assess the feasibility of using these platforms for future AOSN. The data used are taken from nonunderwater glider developers, which consisted of 205 glider deployments by 12 European laboratories between 2008 and 2012. Risk profiles were calculated for two makes of deep underwater gliders; there is no statistically significant difference between them. Regardless of the make, the probability of a deep underwater glider surviving a 90-day mission without a premature mission end is approximately 0.5. The probability of a shallow underwater glider surviving a 30-day mission without a premature mission end is 0.59. This implies that to date factors other than the energy available are preventing underwater gliders from achieving their maximum capability. This reliability information was used to quantify the likelihood of two reported underwater glider surveys meeting the observation needs for a period of 6 months and to quantify the level of redundancy needed in order to increase the likelihood of meeting the observation needs.
    • Download: (1.150Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Underwater Glider Reliability and Implications for Survey Design

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4228360
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorBrito, Mario
    contributor authorSmeed, David
    contributor authorGriffiths, Gwyn
    date accessioned2017-06-09T17:25:24Z
    date available2017-06-09T17:25:24Z
    date copyright2014/12/01
    date issued2014
    identifier issn0739-0572
    identifier otherams-84966.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4228360
    description abstractt has been 20 years since the concept of the Autonomous Ocean Sampling Network (AOSN) was first introduced. This vision has been brought closer to reality with the introduction of underwater gliders. While in terms of functionality the underwater glider has shown to be capable of meeting the AOSN vision, in terms of reliability there is no communitywide hard evidence on whether persistent presence is currently being achieved. This paper studies the reliability of underwater gliders in order to assess the feasibility of using these platforms for future AOSN. The data used are taken from nonunderwater glider developers, which consisted of 205 glider deployments by 12 European laboratories between 2008 and 2012. Risk profiles were calculated for two makes of deep underwater gliders; there is no statistically significant difference between them. Regardless of the make, the probability of a deep underwater glider surviving a 90-day mission without a premature mission end is approximately 0.5. The probability of a shallow underwater glider surviving a 30-day mission without a premature mission end is 0.59. This implies that to date factors other than the energy available are preventing underwater gliders from achieving their maximum capability. This reliability information was used to quantify the likelihood of two reported underwater glider surveys meeting the observation needs for a period of 6 months and to quantify the level of redundancy needed in order to increase the likelihood of meeting the observation needs.
    publisherAmerican Meteorological Society
    titleUnderwater Glider Reliability and Implications for Survey Design
    typeJournal Paper
    journal volume31
    journal issue12
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/JTECH-D-13-00138.1
    journal fristpage2858
    journal lastpage2870
    treeJournal of Atmospheric and Oceanic Technology:;2014:;volume( 031 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian