YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Observation Operator for Visible and Near-Infrared Satellite Reflectances

    Source: Journal of Atmospheric and Oceanic Technology:;2014:;volume( 031 ):;issue: 006::page 1216
    Author:
    Kostka, Philipp M.
    ,
    Weissmann, Martin
    ,
    Buras, Robert
    ,
    Mayer, Bernhard
    ,
    Stiller, Olaf
    DOI: 10.1175/JTECH-D-13-00116.1
    Publisher: American Meteorological Society
    Abstract: perational numerical weather prediction systems currently only assimilate infrared and microwave satellite observations, whereas visible and near-infrared reflectances that comprise information on atmospheric clouds are not exploited. One of the reasons for that is the absence of computationally efficient observation operators. To remedy this issue in anticipation of the future regional Kilometer-Scale Ensemble Data Assimilation (KENDA) system of Deutscher Wetterdienst, we have developed a version that is fast enough for investigating the assimilation of cloudy reflectances in a case study approach. The operator solves the radiative transfer equation to simulate visible and near-infrared channels of satellite instruments based on the one-dimensional (1D) discrete ordinate method. As input, model output of the operational limited-area Consortium for Small-Scale Modeling (COSMO) model of Deutscher Wetterdienst is used. Assumptions concerning subgrid-scale processes, calculation of in-cloud values of liquid water content, ice water content, and cloud microphysics are summarized, and the accuracy of the 1D simulation is estimated through comparison with three-dimensional (3D) Monte Carlo solver results. In addition, the effects of a parallax correction and horizontal smoothing are quantified. The relative difference between the 1D simulation in ?independent column approximation? and the 3D calculation is typically less than 9% between 0600 and 1500 UTC, computed from four scenes during one day (with local noon at 1115 UTC). The parallax-corrected version reduces the deviation to less than 6% for reflectance observations with a central wavelength of 810 nm. Horizontal averaging can further reduce the error of the 1D simulation. In all cases, the bias is less than 1% for the model domain.
    • Download: (2.349Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Observation Operator for Visible and Near-Infrared Satellite Reflectances

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4228338
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorKostka, Philipp M.
    contributor authorWeissmann, Martin
    contributor authorBuras, Robert
    contributor authorMayer, Bernhard
    contributor authorStiller, Olaf
    date accessioned2017-06-09T17:25:21Z
    date available2017-06-09T17:25:21Z
    date copyright2014/06/01
    date issued2014
    identifier issn0739-0572
    identifier otherams-84946.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4228338
    description abstractperational numerical weather prediction systems currently only assimilate infrared and microwave satellite observations, whereas visible and near-infrared reflectances that comprise information on atmospheric clouds are not exploited. One of the reasons for that is the absence of computationally efficient observation operators. To remedy this issue in anticipation of the future regional Kilometer-Scale Ensemble Data Assimilation (KENDA) system of Deutscher Wetterdienst, we have developed a version that is fast enough for investigating the assimilation of cloudy reflectances in a case study approach. The operator solves the radiative transfer equation to simulate visible and near-infrared channels of satellite instruments based on the one-dimensional (1D) discrete ordinate method. As input, model output of the operational limited-area Consortium for Small-Scale Modeling (COSMO) model of Deutscher Wetterdienst is used. Assumptions concerning subgrid-scale processes, calculation of in-cloud values of liquid water content, ice water content, and cloud microphysics are summarized, and the accuracy of the 1D simulation is estimated through comparison with three-dimensional (3D) Monte Carlo solver results. In addition, the effects of a parallax correction and horizontal smoothing are quantified. The relative difference between the 1D simulation in ?independent column approximation? and the 3D calculation is typically less than 9% between 0600 and 1500 UTC, computed from four scenes during one day (with local noon at 1115 UTC). The parallax-corrected version reduces the deviation to less than 6% for reflectance observations with a central wavelength of 810 nm. Horizontal averaging can further reduce the error of the 1D simulation. In all cases, the bias is less than 1% for the model domain.
    publisherAmerican Meteorological Society
    titleObservation Operator for Visible and Near-Infrared Satellite Reflectances
    typeJournal Paper
    journal volume31
    journal issue6
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/JTECH-D-13-00116.1
    journal fristpage1216
    journal lastpage1233
    treeJournal of Atmospheric and Oceanic Technology:;2014:;volume( 031 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian