YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Quantification of the Effects of Shattering on Airborne Ice Particle Measurements

    Source: Journal of Atmospheric and Oceanic Technology:;2013:;volume( 030 ):;issue: 011::page 2527
    Author:
    Korolev, A. V.
    ,
    Emery, E. F.
    ,
    Strapp, J. W.
    ,
    Cober, S. G.
    ,
    Isaac, G. A.
    DOI: 10.1175/JTECH-D-13-00115.1
    Publisher: American Meteorological Society
    Abstract: ce particle shattering poses a serious problem to the airborne characterization of ice cloud microstructure. Shattered ice fragments may contaminate particle measurements, resulting in artificially high concentrations of small ice. The ubiquitous observation of small ice particles has been debated over the last three decades. The present work is focused on the study of the effect of shattering based on the results of the Airborne Icing Instrumentation Evaluation (AIIE) experiment flight campaign. Quantitative characterization of the shattering effect was studied by comparing measurements from pairs of identical probes, one modified to mitigate shattering using tips designed for this study (K-tips) and the other in the standard manufacturer?s configuration. The study focused on three probes: the forward scattering spectrometer probe (FSSP), the optical array probe (OAP-2DC), and the cloud imaging probe (CIP). It has been shown that the overestimation errors of the number concentration in size distributions measured by 2D probes increase with decreasing size, mainly affecting particles smaller than approximately 500 ?m. It was found that shattering artifacts may increase measured particle number concentration by 1 to 2 orders of magnitude. However, the associated increase of the extinction coefficient and ice water content derived from 2D data is estimated at only 20%?30%. Existing antishattering algorithms alone are incapable of filtering out all shattering artifacts from OAP-2DC and CIP measurements. FSSP measurements can be completely dominated by shattering artifacts, and it is not recommended to use this instrument for measurements in ice clouds, except in special circumstances. Because of the large impact of shattering on ice measurements, the historical data collected by FSSP and OAP-2DC should be reexamined by the cloud physics community.
    • Download: (4.310Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Quantification of the Effects of Shattering on Airborne Ice Particle Measurements

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4228337
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorKorolev, A. V.
    contributor authorEmery, E. F.
    contributor authorStrapp, J. W.
    contributor authorCober, S. G.
    contributor authorIsaac, G. A.
    date accessioned2017-06-09T17:25:20Z
    date available2017-06-09T17:25:20Z
    date copyright2013/11/01
    date issued2013
    identifier issn0739-0572
    identifier otherams-84945.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4228337
    description abstractce particle shattering poses a serious problem to the airborne characterization of ice cloud microstructure. Shattered ice fragments may contaminate particle measurements, resulting in artificially high concentrations of small ice. The ubiquitous observation of small ice particles has been debated over the last three decades. The present work is focused on the study of the effect of shattering based on the results of the Airborne Icing Instrumentation Evaluation (AIIE) experiment flight campaign. Quantitative characterization of the shattering effect was studied by comparing measurements from pairs of identical probes, one modified to mitigate shattering using tips designed for this study (K-tips) and the other in the standard manufacturer?s configuration. The study focused on three probes: the forward scattering spectrometer probe (FSSP), the optical array probe (OAP-2DC), and the cloud imaging probe (CIP). It has been shown that the overestimation errors of the number concentration in size distributions measured by 2D probes increase with decreasing size, mainly affecting particles smaller than approximately 500 ?m. It was found that shattering artifacts may increase measured particle number concentration by 1 to 2 orders of magnitude. However, the associated increase of the extinction coefficient and ice water content derived from 2D data is estimated at only 20%?30%. Existing antishattering algorithms alone are incapable of filtering out all shattering artifacts from OAP-2DC and CIP measurements. FSSP measurements can be completely dominated by shattering artifacts, and it is not recommended to use this instrument for measurements in ice clouds, except in special circumstances. Because of the large impact of shattering on ice measurements, the historical data collected by FSSP and OAP-2DC should be reexamined by the cloud physics community.
    publisherAmerican Meteorological Society
    titleQuantification of the Effects of Shattering on Airborne Ice Particle Measurements
    typeJournal Paper
    journal volume30
    journal issue11
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/JTECH-D-13-00115.1
    journal fristpage2527
    journal lastpage2553
    treeJournal of Atmospheric and Oceanic Technology:;2013:;volume( 030 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian