YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Real-Time Measurement of the Range Correlation for Range Oversampling Processing

    Source: Journal of Atmospheric and Oceanic Technology:;2013:;volume( 030 ):;issue: 012::page 2885
    Author:
    Curtis, Christopher D.
    ,
    Torres, Sebastián M.
    DOI: 10.1175/JTECH-D-13-00090.1
    Publisher: American Meteorological Society
    Abstract: s range-oversampling processing has become more practical for weather radars, implementation issues have become important to ensure the best possible performance. For example, all of the linear transformations that have been utilized for range-oversampling processing directly depend on the normalized range correlation matrix. Hence, accurately measuring the correlation in range time is essential to avoid reflectivity biases and to ensure the expected variance reduction. Although the range correlation should be relatively stable over time, hardware changes and drift due to changing environmental conditions can have measurable effects on the modified pulse. To reliably track changes in the range correlation, an automated real-time method is needed that does not interfere with normal data collection. A method is proposed that uses range-oversampled data from operational radar scans and that works with radar returns from both weather and ground clutter. In this paper, the method is described, tested using simulations, and validated with time series data.
    • Download: (1.099Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Real-Time Measurement of the Range Correlation for Range Oversampling Processing

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4228317
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorCurtis, Christopher D.
    contributor authorTorres, Sebastián M.
    date accessioned2017-06-09T17:25:15Z
    date available2017-06-09T17:25:15Z
    date copyright2013/12/01
    date issued2013
    identifier issn0739-0572
    identifier otherams-84927.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4228317
    description abstracts range-oversampling processing has become more practical for weather radars, implementation issues have become important to ensure the best possible performance. For example, all of the linear transformations that have been utilized for range-oversampling processing directly depend on the normalized range correlation matrix. Hence, accurately measuring the correlation in range time is essential to avoid reflectivity biases and to ensure the expected variance reduction. Although the range correlation should be relatively stable over time, hardware changes and drift due to changing environmental conditions can have measurable effects on the modified pulse. To reliably track changes in the range correlation, an automated real-time method is needed that does not interfere with normal data collection. A method is proposed that uses range-oversampled data from operational radar scans and that works with radar returns from both weather and ground clutter. In this paper, the method is described, tested using simulations, and validated with time series data.
    publisherAmerican Meteorological Society
    titleReal-Time Measurement of the Range Correlation for Range Oversampling Processing
    typeJournal Paper
    journal volume30
    journal issue12
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/JTECH-D-13-00090.1
    journal fristpage2885
    journal lastpage2895
    treeJournal of Atmospheric and Oceanic Technology:;2013:;volume( 030 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian