YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Polarization Diversity for Millimeter Spaceborne Doppler Radars: An Answer for Observing Deep Convection?

    Source: Journal of Atmospheric and Oceanic Technology:;2013:;volume( 030 ):;issue: 012::page 2768
    Author:
    Battaglia, Alessandro
    ,
    Tanelli, Simone
    ,
    Kollias, Pavlos
    DOI: 10.1175/JTECH-D-13-00085.1
    Publisher: American Meteorological Society
    Abstract: paceborne Doppler radars have the potential to provide key missing observations of convective vertical air motions especially over the tropical oceans. Such measurements can improve understanding of the role of tropical convection in vertical energy transport and its interaction with the environment. Several millimeter wavelength Doppler radar concepts have been proposed since the 1990s. The Earth Clouds, Aerosols, and Radiation Explorer (EarthCARE) Cloud Profiling Radar (CPR) will be the first Dopplerized atmospheric radar in space but has not been optimized for Doppler measurements in deep convective clouds.The key challenge that constrains the CPR performance in convective clouds is the range?Doppler dilemma. Polarization diversity (PD) offers a solution to this constraint by decoupling the coherency (Doppler) requirement from the unambiguous range requirement. Careful modeling of the radar signal depolarization and its impact on radar receiver channel cross talk is needed to accurately assess the performance of the PD approach.The end-to-end simulator presented in this work allows reproduction of the signal sensed by a Doppler radar equipped with polarization diversity when overpassing realistic three-dimensional convective cells, with all relevant cross-talk sources accounted for. The notional study highlights that multiple scattering is the primary source of cross talk, highly detrimental for millimeter Doppler velocity accuracy. The ambitious scientific requirement of 1 m s?1 accuracy at 500-m integration for reflectivities above ?15 dBZ are within reach for a W-band radar with a 2.5-m antenna with optimal values of the pulse-pair interval between 20 and 30 ?s but only once multiple scattering and ghost-contaminated regions are screened out. The identification of such areas is key for Doppler accuracies and can be achieved by employing an interlaced pulse-pair mode that measures the cross and the copolar reflectivities. To mitigate the impact of attenuation and multiple scattering, the Ka band has been considered as either alternative or additional to the W band. However, a Ka system produces worse Doppler performances than a W-band system with the same 2.5-m antenna size. Furthermore, in deep convection it results in similar levels of multiple scattering and therefore it does not increase significantly the depth of penetration. In addition, the larger footprint causes stronger nonuniform beam-filling effects. One advantage of the Ka-band option is the larger Nyquist velocity that tends to reduce the Doppler accuracies. More significant benefits are derived from the Ka band when observing precipitation not as intense as the deep convection is considered here.This study demonstrates that polarization diversity indeed represents a very promising methodology capable of significantly reducing aliasing and Doppler moment estimate errors, two main error sources for Doppler velocity estimates in deep convective systems and a key step to achieving typical mission requirements for convection-oriented millimeter radar-based spaceborne missions.
    • Download: (4.054Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Polarization Diversity for Millimeter Spaceborne Doppler Radars: An Answer for Observing Deep Convection?

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4228313
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorBattaglia, Alessandro
    contributor authorTanelli, Simone
    contributor authorKollias, Pavlos
    date accessioned2017-06-09T17:25:15Z
    date available2017-06-09T17:25:15Z
    date copyright2013/12/01
    date issued2013
    identifier issn0739-0572
    identifier otherams-84923.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4228313
    description abstractpaceborne Doppler radars have the potential to provide key missing observations of convective vertical air motions especially over the tropical oceans. Such measurements can improve understanding of the role of tropical convection in vertical energy transport and its interaction with the environment. Several millimeter wavelength Doppler radar concepts have been proposed since the 1990s. The Earth Clouds, Aerosols, and Radiation Explorer (EarthCARE) Cloud Profiling Radar (CPR) will be the first Dopplerized atmospheric radar in space but has not been optimized for Doppler measurements in deep convective clouds.The key challenge that constrains the CPR performance in convective clouds is the range?Doppler dilemma. Polarization diversity (PD) offers a solution to this constraint by decoupling the coherency (Doppler) requirement from the unambiguous range requirement. Careful modeling of the radar signal depolarization and its impact on radar receiver channel cross talk is needed to accurately assess the performance of the PD approach.The end-to-end simulator presented in this work allows reproduction of the signal sensed by a Doppler radar equipped with polarization diversity when overpassing realistic three-dimensional convective cells, with all relevant cross-talk sources accounted for. The notional study highlights that multiple scattering is the primary source of cross talk, highly detrimental for millimeter Doppler velocity accuracy. The ambitious scientific requirement of 1 m s?1 accuracy at 500-m integration for reflectivities above ?15 dBZ are within reach for a W-band radar with a 2.5-m antenna with optimal values of the pulse-pair interval between 20 and 30 ?s but only once multiple scattering and ghost-contaminated regions are screened out. The identification of such areas is key for Doppler accuracies and can be achieved by employing an interlaced pulse-pair mode that measures the cross and the copolar reflectivities. To mitigate the impact of attenuation and multiple scattering, the Ka band has been considered as either alternative or additional to the W band. However, a Ka system produces worse Doppler performances than a W-band system with the same 2.5-m antenna size. Furthermore, in deep convection it results in similar levels of multiple scattering and therefore it does not increase significantly the depth of penetration. In addition, the larger footprint causes stronger nonuniform beam-filling effects. One advantage of the Ka-band option is the larger Nyquist velocity that tends to reduce the Doppler accuracies. More significant benefits are derived from the Ka band when observing precipitation not as intense as the deep convection is considered here.This study demonstrates that polarization diversity indeed represents a very promising methodology capable of significantly reducing aliasing and Doppler moment estimate errors, two main error sources for Doppler velocity estimates in deep convective systems and a key step to achieving typical mission requirements for convection-oriented millimeter radar-based spaceborne missions.
    publisherAmerican Meteorological Society
    titlePolarization Diversity for Millimeter Spaceborne Doppler Radars: An Answer for Observing Deep Convection?
    typeJournal Paper
    journal volume30
    journal issue12
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/JTECH-D-13-00085.1
    journal fristpage2768
    journal lastpage2787
    treeJournal of Atmospheric and Oceanic Technology:;2013:;volume( 030 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian