YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Improvements in LICOM2. Part II: Arctic Circulation

    Source: Journal of Atmospheric and Oceanic Technology:;2013:;volume( 031 ):;issue: 001::page 233
    Author:
    Huang, Wen-Yu
    ,
    Wang, Bin
    ,
    Li, Li-Juan
    ,
    Yu, Yong-Qiang
    DOI: 10.1175/JTECH-D-13-00064.1
    Publisher: American Meteorological Society
    Abstract: known issue of the National Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics/Institute of Atmospheric Physics Climate Ocean Model, version 2 (LICOM2, the standard version) is the use of an artificial island in the Arctic Ocean. The computational instability in the polar region seriously influences the model performance in terms of the Arctic circulation. The above-mentioned instability was originally attributed to the converging zonal grids in the polar region. However, this study finds that better computational stability could be achieved in an improved version of LICOM2 (i.e., LICOM2_imp) after four improvements on implementations of the vertical mixing, mesoscale eddy parameterization, and bottom drag schemes. LICOM2_imp is then able to reduce the aforesaid artificial island to a point (i.e., the North Pole).Two experiments of 650-yr integration by LICOM2_imp are carried out using different bathymetries: Exp IMPV0 with the artificial island (88°?90°N) and IMPV1 with only the single pole. The focus of this paper is on the Arctic circulation. Exp IMPV1 gives a more reasonable distribution of salinity and temperature in the Arctic Ocean, a more accurate location of the center of the Beaufort Gyre, and a better net volume flux of the transpolar drift. With more realistic bathymetry in the Arctic Ocean, the biases of net volume fluxes across the Fram Strait, Barents Sea Opening, and Barents Sea Exit are reduced from 1.71 to 1.56, from 0.23 to 0.10, and from 0.71 to 0.45 Sv (1 Sv ≡ 106 m3 s?1), respectively, closer to the observations. The large biases of the net volume fluxes at the Fram Strait in both experiments may be attributed to the closed Nares Strait and other straits/channels in the Canadian Arctic Archipelago.
    • Download: (2.135Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Improvements in LICOM2. Part II: Arctic Circulation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4228294
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorHuang, Wen-Yu
    contributor authorWang, Bin
    contributor authorLi, Li-Juan
    contributor authorYu, Yong-Qiang
    date accessioned2017-06-09T17:25:12Z
    date available2017-06-09T17:25:12Z
    date copyright2014/01/01
    date issued2013
    identifier issn0739-0572
    identifier otherams-84906.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4228294
    description abstractknown issue of the National Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics/Institute of Atmospheric Physics Climate Ocean Model, version 2 (LICOM2, the standard version) is the use of an artificial island in the Arctic Ocean. The computational instability in the polar region seriously influences the model performance in terms of the Arctic circulation. The above-mentioned instability was originally attributed to the converging zonal grids in the polar region. However, this study finds that better computational stability could be achieved in an improved version of LICOM2 (i.e., LICOM2_imp) after four improvements on implementations of the vertical mixing, mesoscale eddy parameterization, and bottom drag schemes. LICOM2_imp is then able to reduce the aforesaid artificial island to a point (i.e., the North Pole).Two experiments of 650-yr integration by LICOM2_imp are carried out using different bathymetries: Exp IMPV0 with the artificial island (88°?90°N) and IMPV1 with only the single pole. The focus of this paper is on the Arctic circulation. Exp IMPV1 gives a more reasonable distribution of salinity and temperature in the Arctic Ocean, a more accurate location of the center of the Beaufort Gyre, and a better net volume flux of the transpolar drift. With more realistic bathymetry in the Arctic Ocean, the biases of net volume fluxes across the Fram Strait, Barents Sea Opening, and Barents Sea Exit are reduced from 1.71 to 1.56, from 0.23 to 0.10, and from 0.71 to 0.45 Sv (1 Sv ≡ 106 m3 s?1), respectively, closer to the observations. The large biases of the net volume fluxes at the Fram Strait in both experiments may be attributed to the closed Nares Strait and other straits/channels in the Canadian Arctic Archipelago.
    publisherAmerican Meteorological Society
    titleImprovements in LICOM2. Part II: Arctic Circulation
    typeJournal Paper
    journal volume31
    journal issue1
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/JTECH-D-13-00064.1
    journal fristpage233
    journal lastpage245
    treeJournal of Atmospheric and Oceanic Technology:;2013:;volume( 031 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian