YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Enhanced Radar Backscattering due to Oriented Ice Particles at 95 GHz during StormVEx

    Source: Journal of Atmospheric and Oceanic Technology:;2013:;volume( 030 ):;issue: 010::page 2336
    Author:
    Marchand, Roger
    ,
    Mace, Gerald G.
    ,
    Hallar, A. Gannet
    ,
    McCubbin, Ian B.
    ,
    Matrosov, Sergey Y.
    ,
    Shupe, Matthew D.
    DOI: 10.1175/JTECH-D-13-00005.1
    Publisher: American Meteorological Society
    Abstract: onspherical atmospheric ice particles can enhance radar backscattering and attenuation above that expected from spheres of the same mass. An analysis of scanning 95-GHz radar data collected during the Storm Peak Laboratory Cloud Property Validation Experiment (StormVEx) shows that at a least a small amount of enhanced backscattering was present in most radar scans, with a median enhancement of 2.4 dB at zenith. This enhancement will cause an error (bias) in ice water content (IWC) retrievals that neglect particle orientation, with a value of 2.4 dB being roughly equivalent to a relative error in IWC of 43%. Of the radar scans examined, 25% had a zenith-enhanced backscattering exceeding 3.5 dB (equivalent to a relative error in IWC in excess of 67%) and 10% of the scans had a zenith-enhanced backscattering exceeding 6.4 dB (equivalent to a relative error in IWC in excess of 150%). Cloud particle images indicate that large enhancement typically occurred when planar crystals (e.g., plates and dendrites) were present, with the largest enhancement occurring when large planar crystals were falling out of a supercooled liquid-water layer. More modest enhancement was sometimes due to planar crystals, but it was also sometimes likely a result of horizontally oriented nonspherical irregularly shaped particles. The analysis also shows there is a strong correlation (about ?0.79) between the change in slant 45° depolarization ratio with radar scan elevation angle and the magnitude of the zenith-enhanced backscattering, suggesting that measurements of the slant depolarization ratio can be used to improve radar-based cloud microphysical property retrievals.
    • Download: (1.363Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Enhanced Radar Backscattering due to Oriented Ice Particles at 95 GHz during StormVEx

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4228245
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorMarchand, Roger
    contributor authorMace, Gerald G.
    contributor authorHallar, A. Gannet
    contributor authorMcCubbin, Ian B.
    contributor authorMatrosov, Sergey Y.
    contributor authorShupe, Matthew D.
    date accessioned2017-06-09T17:25:05Z
    date available2017-06-09T17:25:05Z
    date copyright2013/10/01
    date issued2013
    identifier issn0739-0572
    identifier otherams-84862.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4228245
    description abstractonspherical atmospheric ice particles can enhance radar backscattering and attenuation above that expected from spheres of the same mass. An analysis of scanning 95-GHz radar data collected during the Storm Peak Laboratory Cloud Property Validation Experiment (StormVEx) shows that at a least a small amount of enhanced backscattering was present in most radar scans, with a median enhancement of 2.4 dB at zenith. This enhancement will cause an error (bias) in ice water content (IWC) retrievals that neglect particle orientation, with a value of 2.4 dB being roughly equivalent to a relative error in IWC of 43%. Of the radar scans examined, 25% had a zenith-enhanced backscattering exceeding 3.5 dB (equivalent to a relative error in IWC in excess of 67%) and 10% of the scans had a zenith-enhanced backscattering exceeding 6.4 dB (equivalent to a relative error in IWC in excess of 150%). Cloud particle images indicate that large enhancement typically occurred when planar crystals (e.g., plates and dendrites) were present, with the largest enhancement occurring when large planar crystals were falling out of a supercooled liquid-water layer. More modest enhancement was sometimes due to planar crystals, but it was also sometimes likely a result of horizontally oriented nonspherical irregularly shaped particles. The analysis also shows there is a strong correlation (about ?0.79) between the change in slant 45° depolarization ratio with radar scan elevation angle and the magnitude of the zenith-enhanced backscattering, suggesting that measurements of the slant depolarization ratio can be used to improve radar-based cloud microphysical property retrievals.
    publisherAmerican Meteorological Society
    titleEnhanced Radar Backscattering due to Oriented Ice Particles at 95 GHz during StormVEx
    typeJournal Paper
    journal volume30
    journal issue10
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/JTECH-D-13-00005.1
    journal fristpage2336
    journal lastpage2351
    treeJournal of Atmospheric and Oceanic Technology:;2013:;volume( 030 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian