YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Influence of the Atmospheric Surface Layer on a Turbulent Flow Downstream of a Ship Superstructure

    Source: Journal of Atmospheric and Oceanic Technology:;2013:;volume( 030 ):;issue: 008::page 1803
    Author:
    Luznik, Luksa
    ,
    Brownell, Cody J.
    ,
    Snyder, Murray R.
    ,
    Kang, Hyung Suk
    DOI: 10.1175/JTECH-D-12-00216.1
    Publisher: American Meteorological Society
    Abstract: his paper describes a set of turbulence measurements at sea in the area of high flow distortion in the near-wake and recirculation zone behind a ship's superstructure that is similar in geometry to a helicopter hangar/flight deck arrangement found on many modern U.S. Navy ships. The instrumented ship is a 32-m-long training vessel operated by the United States Naval Academy that has been modified by adding a representative flight deck and hangar structure. The flight deck is instrumented with up to seven sonic anemometers/thermometers that are used to obtain simultaneous velocity measurements at various spatial locations on the flight deck, and one sonic anemometer at bow mast is used to characterize inflow atmospheric boundary conditions. Data characterizing wind over the deck at an incoming angle of 0° (head winds) and wind speeds from 2 to 10 m s?1 obtained in the Chesapeake Bay are presented and discussed. Turbulent statistics of inflow conditions are analyzed using the Kaimal universal turbulence spectral model for the atmospheric surface layer and show that for the present dataset this approach eliminates the need to account for platform motion in computing variances and covariances. Conditional sampling of mean flow and turbulence statistics at the flight deck indicate no statistically significant variations between unstable, stable, and neutral atmospheric inflow conditions, and the results agree with the published data for flows over the backward-facing step geometries.
    • Download: (1.876Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Influence of the Atmospheric Surface Layer on a Turbulent Flow Downstream of a Ship Superstructure

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4228202
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorLuznik, Luksa
    contributor authorBrownell, Cody J.
    contributor authorSnyder, Murray R.
    contributor authorKang, Hyung Suk
    date accessioned2017-06-09T17:24:58Z
    date available2017-06-09T17:24:58Z
    date copyright2013/08/01
    date issued2013
    identifier issn0739-0572
    identifier otherams-84823.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4228202
    description abstracthis paper describes a set of turbulence measurements at sea in the area of high flow distortion in the near-wake and recirculation zone behind a ship's superstructure that is similar in geometry to a helicopter hangar/flight deck arrangement found on many modern U.S. Navy ships. The instrumented ship is a 32-m-long training vessel operated by the United States Naval Academy that has been modified by adding a representative flight deck and hangar structure. The flight deck is instrumented with up to seven sonic anemometers/thermometers that are used to obtain simultaneous velocity measurements at various spatial locations on the flight deck, and one sonic anemometer at bow mast is used to characterize inflow atmospheric boundary conditions. Data characterizing wind over the deck at an incoming angle of 0° (head winds) and wind speeds from 2 to 10 m s?1 obtained in the Chesapeake Bay are presented and discussed. Turbulent statistics of inflow conditions are analyzed using the Kaimal universal turbulence spectral model for the atmospheric surface layer and show that for the present dataset this approach eliminates the need to account for platform motion in computing variances and covariances. Conditional sampling of mean flow and turbulence statistics at the flight deck indicate no statistically significant variations between unstable, stable, and neutral atmospheric inflow conditions, and the results agree with the published data for flows over the backward-facing step geometries.
    publisherAmerican Meteorological Society
    titleInfluence of the Atmospheric Surface Layer on a Turbulent Flow Downstream of a Ship Superstructure
    typeJournal Paper
    journal volume30
    journal issue8
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/JTECH-D-12-00216.1
    journal fristpage1803
    journal lastpage1819
    treeJournal of Atmospheric and Oceanic Technology:;2013:;volume( 030 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian