YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Biases in Expendable Bathythermograph Data: A New View Based on Historical Side-by-Side Comparisons

    Source: Journal of Atmospheric and Oceanic Technology:;2013:;volume( 030 ):;issue: 006::page 1195
    Author:
    Cowley, Rebecca
    ,
    Wijffels, Susan
    ,
    Cheng, Lijing
    ,
    Boyer, Tim
    ,
    Kizu, Shoichi
    DOI: 10.1175/JTECH-D-12-00127.1
    Publisher: American Meteorological Society
    Abstract: ecause they make up 56% of ocean temperature profile data between 1967 and 2001, quantifying the biases in expendable bathythermograph (XBT) data is fundamental to understanding the evolution of the planetary energy and sea level budgets over recent decades. The nature and time history of these biases remain in dispute and dominate differences in analyses of the history of ocean warming. A database of over 4100 side-by-side deployments of XBTs and conductivity?temperature?depth (CTD) data has been assembled, and this unique resource is used to characterize and separate out the pure temperature bias from depth error in a way that was not previously possible. Two independent methods of bias extraction confirm that the results are robust to bias model and fitting method. It was found that there is a pure temperature bias in Sippican probes of ~0.05°C, independent of depth. The temperature bias has a time dependency, being larger (~0.1°C) in the earlier analog acquisition era and being likely due to changes in recorder type. Large depth errors are found in the 1970s?80s in shallower-measuring Sippican T4/T6 probe types, but the deeper-measuring Sippican T7/Deep Blue (DB) types have no error during this time. The Sippican T7/DB fall rate slows from ~1990 onward. It is found that year-to-year variations in fall rate have a bigger effect on corrections to the global XBT database than do any small effects of ocean temperature on fall rate. This study has large implications for the future development of better schemes to correct the global historical XBT archive.
    • Download: (6.713Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Biases in Expendable Bathythermograph Data: A New View Based on Historical Side-by-Side Comparisons

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4228131
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorCowley, Rebecca
    contributor authorWijffels, Susan
    contributor authorCheng, Lijing
    contributor authorBoyer, Tim
    contributor authorKizu, Shoichi
    date accessioned2017-06-09T17:24:44Z
    date available2017-06-09T17:24:44Z
    date copyright2013/06/01
    date issued2013
    identifier issn0739-0572
    identifier otherams-84760.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4228131
    description abstractecause they make up 56% of ocean temperature profile data between 1967 and 2001, quantifying the biases in expendable bathythermograph (XBT) data is fundamental to understanding the evolution of the planetary energy and sea level budgets over recent decades. The nature and time history of these biases remain in dispute and dominate differences in analyses of the history of ocean warming. A database of over 4100 side-by-side deployments of XBTs and conductivity?temperature?depth (CTD) data has been assembled, and this unique resource is used to characterize and separate out the pure temperature bias from depth error in a way that was not previously possible. Two independent methods of bias extraction confirm that the results are robust to bias model and fitting method. It was found that there is a pure temperature bias in Sippican probes of ~0.05°C, independent of depth. The temperature bias has a time dependency, being larger (~0.1°C) in the earlier analog acquisition era and being likely due to changes in recorder type. Large depth errors are found in the 1970s?80s in shallower-measuring Sippican T4/T6 probe types, but the deeper-measuring Sippican T7/Deep Blue (DB) types have no error during this time. The Sippican T7/DB fall rate slows from ~1990 onward. It is found that year-to-year variations in fall rate have a bigger effect on corrections to the global XBT database than do any small effects of ocean temperature on fall rate. This study has large implications for the future development of better schemes to correct the global historical XBT archive.
    publisherAmerican Meteorological Society
    titleBiases in Expendable Bathythermograph Data: A New View Based on Historical Side-by-Side Comparisons
    typeJournal Paper
    journal volume30
    journal issue6
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/JTECH-D-12-00127.1
    journal fristpage1195
    journal lastpage1225
    treeJournal of Atmospheric and Oceanic Technology:;2013:;volume( 030 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian