YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Simulation of Spaced Antenna Wind Retrieval Performance on an X-Band Active Phased Array Weather Radar

    Source: Journal of Atmospheric and Oceanic Technology:;2012:;volume( 030 ):;issue: 007::page 1447
    Author:
    Venkatesh, V.
    ,
    Frasier, S. J.
    DOI: 10.1175/JTECH-D-11-00203.1
    Publisher: American Meteorological Society
    Abstract: paced antenna baseline wind retrievals, in conjunction with traditional Doppler measurements, are a potential means of fine angular resolution weather radar wind vector retrieval. A spaced antenna implementation on an X-band active phased array architecture is investigated via Monte Carlo simulations of the backscattered electric fields at the antenna array. Several retrieval methods are exercised on the data produced by the simulator. Parameters of the X-band spaced-antenna design are then optimized. Benefiting from the parametric fitting procedure inherent in the time domain slope at zero lag and full correlation analysis, the study finds both of these algorithms to be more immune to thermal noise than the spectral retrieval algorithms investigated. With appropriately chosen baselines, these time domain algorithms are shown to perform adequately for 5-dB SNR and above. The study also shows that the Gaussian slope at zero lag (G-SZL) algorithm leads to more robust estimates over a wider range of beamwidths than the Gaussian full correlation analysis (G-FCA) algorithm. The predicted performance of the X-band array is compared to a similar spaced antenna implementation on the S-band National Weather Radar Testbed (NWRT). Since the X-band signal decorrelates more rapidly (relative to S band), the X-band array accumulates more independent samples, thereby obtaining lower retrieval uncertainty. However, the same rapid decorrelation also limits the maximum range of the X-band array, as the pulse rate must be sufficiently high to sample the cross-correlation function. It also limits the range of tolerable turbulence velocity within the resolution cell.
    • Download: (1.151Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Simulation of Spaced Antenna Wind Retrieval Performance on an X-Band Active Phased Array Weather Radar

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4228013
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorVenkatesh, V.
    contributor authorFrasier, S. J.
    date accessioned2017-06-09T17:24:21Z
    date available2017-06-09T17:24:21Z
    date copyright2013/07/01
    date issued2012
    identifier issn0739-0572
    identifier otherams-84653.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4228013
    description abstractpaced antenna baseline wind retrievals, in conjunction with traditional Doppler measurements, are a potential means of fine angular resolution weather radar wind vector retrieval. A spaced antenna implementation on an X-band active phased array architecture is investigated via Monte Carlo simulations of the backscattered electric fields at the antenna array. Several retrieval methods are exercised on the data produced by the simulator. Parameters of the X-band spaced-antenna design are then optimized. Benefiting from the parametric fitting procedure inherent in the time domain slope at zero lag and full correlation analysis, the study finds both of these algorithms to be more immune to thermal noise than the spectral retrieval algorithms investigated. With appropriately chosen baselines, these time domain algorithms are shown to perform adequately for 5-dB SNR and above. The study also shows that the Gaussian slope at zero lag (G-SZL) algorithm leads to more robust estimates over a wider range of beamwidths than the Gaussian full correlation analysis (G-FCA) algorithm. The predicted performance of the X-band array is compared to a similar spaced antenna implementation on the S-band National Weather Radar Testbed (NWRT). Since the X-band signal decorrelates more rapidly (relative to S band), the X-band array accumulates more independent samples, thereby obtaining lower retrieval uncertainty. However, the same rapid decorrelation also limits the maximum range of the X-band array, as the pulse rate must be sufficiently high to sample the cross-correlation function. It also limits the range of tolerable turbulence velocity within the resolution cell.
    publisherAmerican Meteorological Society
    titleSimulation of Spaced Antenna Wind Retrieval Performance on an X-Band Active Phased Array Weather Radar
    typeJournal Paper
    journal volume30
    journal issue7
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/JTECH-D-11-00203.1
    journal fristpage1447
    journal lastpage1459
    treeJournal of Atmospheric and Oceanic Technology:;2012:;volume( 030 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian