YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Performance of a Wind-Profiling Lidar in the Region of Wind Turbine Rotor Disks

    Source: Journal of Atmospheric and Oceanic Technology:;2012:;volume( 029 ):;issue: 003::page 347
    Author:
    Aitken, Matthew L.
    ,
    Rhodes, Michael E.
    ,
    Lundquist, Julie K.
    DOI: 10.1175/JTECH-D-11-00033.1
    Publisher: American Meteorological Society
    Abstract: s the wind energy sector continues to grow, so does the need for reliable vertical wind profiles in the assessment of wind resources and turbine performance. In situ instrumentation mounted on meteorological towers can rarely probe the atmosphere across the full span of modern turbine rotor disks, which typically extend from 40 to 120 m above the surface. However, by measuring the Doppler shift of laser light backscattered by particles in the atmosphere, remote sensing lidar is capable of estimating wind speeds and turbulence at several altitudes in this range and above. Consequently, lidar has proven a promising technology for both wind resource assessment and turbine response characterization. The aim of this study is to quantify data availability for a coherent detection wind-profiling lidar?namely, the Leosphere Windcube.To determine situations of suitable data return rates, a Windcube, collocated with a Vaisala CL31 ceilometer, was deployed as part of the Skywatch Observatory at the University of Colorado at Boulder. Aerosol backscatter, as measured by the ceilometer, and lidar carrier-to-noise ratio (CNR) are strongly correlated. Additionally, lidar CNR was found to depend on atmospheric turbulence characteristics and relative humidity in another deployment at a location in the United States Great Plains. These relationships suggest an ability to predict lidar performance based on widely available air quality assessments (such as PM2.5 concentration) and other climatic conditions, thus providing guidance for determining the utility of lidar deployments at wind farms to characterize turbine performance.
    • Download: (1.037Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Performance of a Wind-Profiling Lidar in the Region of Wind Turbine Rotor Disks

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4227885
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorAitken, Matthew L.
    contributor authorRhodes, Michael E.
    contributor authorLundquist, Julie K.
    date accessioned2017-06-09T17:23:58Z
    date available2017-06-09T17:23:58Z
    date copyright2012/03/01
    date issued2012
    identifier issn0739-0572
    identifier otherams-84538.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4227885
    description abstracts the wind energy sector continues to grow, so does the need for reliable vertical wind profiles in the assessment of wind resources and turbine performance. In situ instrumentation mounted on meteorological towers can rarely probe the atmosphere across the full span of modern turbine rotor disks, which typically extend from 40 to 120 m above the surface. However, by measuring the Doppler shift of laser light backscattered by particles in the atmosphere, remote sensing lidar is capable of estimating wind speeds and turbulence at several altitudes in this range and above. Consequently, lidar has proven a promising technology for both wind resource assessment and turbine response characterization. The aim of this study is to quantify data availability for a coherent detection wind-profiling lidar?namely, the Leosphere Windcube.To determine situations of suitable data return rates, a Windcube, collocated with a Vaisala CL31 ceilometer, was deployed as part of the Skywatch Observatory at the University of Colorado at Boulder. Aerosol backscatter, as measured by the ceilometer, and lidar carrier-to-noise ratio (CNR) are strongly correlated. Additionally, lidar CNR was found to depend on atmospheric turbulence characteristics and relative humidity in another deployment at a location in the United States Great Plains. These relationships suggest an ability to predict lidar performance based on widely available air quality assessments (such as PM2.5 concentration) and other climatic conditions, thus providing guidance for determining the utility of lidar deployments at wind farms to characterize turbine performance.
    publisherAmerican Meteorological Society
    titlePerformance of a Wind-Profiling Lidar in the Region of Wind Turbine Rotor Disks
    typeJournal Paper
    journal volume29
    journal issue3
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/JTECH-D-11-00033.1
    journal fristpage347
    journal lastpage355
    treeJournal of Atmospheric and Oceanic Technology:;2012:;volume( 029 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian