YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Optimized Determination of Viscous Mud Properties Using a Nonlinear Wave–Mud Interaction Model

    Source: Journal of Atmospheric and Oceanic Technology:;2011:;volume( 028 ):;issue: 011::page 1486
    Author:
    Tahvildari, Navid
    ,
    Kaihatu, James M.
    DOI: 10.1175/JTECH-D-11-00025.1
    Publisher: American Meteorological Society
    Abstract: he complex process of surface wave propagation over areas of cohesive sediments has generally been treated by assuming a particular rheological behavior for the mud layer, thereby fixing the description of the mud characteristics into the specification of parameters relevant to the selected rheology. The capability of inverting data to recover these parameters is investigated here. Representing the mud layer as a thin viscous fluid, a nonlinear wave?mud interaction model, coupled with a nonlinear optimization technique (Levenberg?Marquardt), is used to deduce mud characteristics from estimates of wave energy. A set of numerical tests with a deterministic phase-coherent cnoidal wave are conducted to individually estimate viscosity and mud layer depth (keeping one fixed while estimating the other), and to determine the limits of convergence of the inversion algorithm. It is shown that instances of convergence or nonconvergence can be traced to the shape of the dissipation rate curve as a function of the parameter under consideration as well as the location of the initial guesses of the target parameter along that curve. It is found that the estimation of viscosity is less problematic than the estimation of mud layer depth. Tests with random waves are also performed, using both root-mean-square wave height (representation of wave energy) and wave skewness (representation of nonlinear wave properties) as input for the inversion. The use of random waves appears to ameliorate many of the convergence difficulties encountered with the cnoidal wave tests, while the use of wave skewness, while promising, is somewhat less successful. Finally, the inversion algorithm is tested against laboratory data and the deduction of both mud layer depth and viscosity proceed well. Implications for general mud property deduction are discussed.
    • Download: (1.306Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Optimized Determination of Viscous Mud Properties Using a Nonlinear Wave–Mud Interaction Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4227879
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorTahvildari, Navid
    contributor authorKaihatu, James M.
    date accessioned2017-06-09T17:23:57Z
    date available2017-06-09T17:23:57Z
    date copyright2011/11/01
    date issued2011
    identifier issn0739-0572
    identifier otherams-84532.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4227879
    description abstracthe complex process of surface wave propagation over areas of cohesive sediments has generally been treated by assuming a particular rheological behavior for the mud layer, thereby fixing the description of the mud characteristics into the specification of parameters relevant to the selected rheology. The capability of inverting data to recover these parameters is investigated here. Representing the mud layer as a thin viscous fluid, a nonlinear wave?mud interaction model, coupled with a nonlinear optimization technique (Levenberg?Marquardt), is used to deduce mud characteristics from estimates of wave energy. A set of numerical tests with a deterministic phase-coherent cnoidal wave are conducted to individually estimate viscosity and mud layer depth (keeping one fixed while estimating the other), and to determine the limits of convergence of the inversion algorithm. It is shown that instances of convergence or nonconvergence can be traced to the shape of the dissipation rate curve as a function of the parameter under consideration as well as the location of the initial guesses of the target parameter along that curve. It is found that the estimation of viscosity is less problematic than the estimation of mud layer depth. Tests with random waves are also performed, using both root-mean-square wave height (representation of wave energy) and wave skewness (representation of nonlinear wave properties) as input for the inversion. The use of random waves appears to ameliorate many of the convergence difficulties encountered with the cnoidal wave tests, while the use of wave skewness, while promising, is somewhat less successful. Finally, the inversion algorithm is tested against laboratory data and the deduction of both mud layer depth and viscosity proceed well. Implications for general mud property deduction are discussed.
    publisherAmerican Meteorological Society
    titleOptimized Determination of Viscous Mud Properties Using a Nonlinear Wave–Mud Interaction Model
    typeJournal Paper
    journal volume28
    journal issue11
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/JTECH-D-11-00025.1
    journal fristpage1486
    journal lastpage1503
    treeJournal of Atmospheric and Oceanic Technology:;2011:;volume( 028 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian