YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Assessments of Chinese Fengyun Microwave Temperature Sounder (MWTS) Measurements for Weather and Climate Applications

    Source: Journal of Atmospheric and Oceanic Technology:;2011:;volume( 028 ):;issue: 010::page 1206
    Author:
    Zou, X.
    ,
    Wang, X.
    ,
    Weng, F.
    ,
    Li, G.
    DOI: 10.1175/JTECH-D-11-00023.1
    Publisher: American Meteorological Society
    Abstract: fter the successful launches of the first two polar-orbiting satellites in a new Fengyun-3 (FY-3) series, FY-3A/B, into a morning- and afternoon-configured orbit in May 2008 and November 2010, respectively, China will launch its next three polar-orbiting satellites before 2020. The Microwave Temperature Sounder (MWTS) on the FY-3A/B satellites has four channels that have the same channel frequency as channels 3, 5, 7, and 9 of Advanced Microwave Sounding Unit-A (AMSU-A). Thus, the quality of the brightness temperature measurements from the FY-3A MWTS can be assessed using the AMSU-A brightness temperature observations from the NOAA-18 satellite. Overall, MWTS data compare favorably with AMSU-A data in terms of its global bias to NWP simulations. The standard deviations of global MWTS brightness temperatures are slightly larger than those of AMSU-A data. The scan-angle dependence of the brightness temperature bias is found to be symmetric for MWTS channel 3 as well as AMSU-A channel 7, and asymmetric for MWTS channels 2 and 4 and AMSU-A channels 5 and 9; there is a warm (cold) bias located at the beginning (end) of a scan line for all asymmetric channels except for MWTS channel 4. A major difference between the two instruments is that the MWTS biases in channels 3 and 4 are negative in low latitudes and positive in high latitudes, while the AMSU-A biases are negative in all latitudes. A detailed analysis of the data reveals that such a difference is closely related to the difference in the temperature dependence of biases between the two instruments. The AMSU-A biases are independent of the scene temperature, but MWTS biases vary with the earth scene brightness temperature. The root cause of the bias could be a combination of several factors, including solar contamination on its calibration target, detector nonlinearity, and the center frequency drift. This study further demonstrates the utility of a well-calibrated radiometer like AMSU-A for the assessment of a new instrument with NWP fields that are used as inputs to forward radiative transfer simulations.
    • Download: (7.975Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Assessments of Chinese Fengyun Microwave Temperature Sounder (MWTS) Measurements for Weather and Climate Applications

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4227876
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorZou, X.
    contributor authorWang, X.
    contributor authorWeng, F.
    contributor authorLi, G.
    date accessioned2017-06-09T17:23:57Z
    date available2017-06-09T17:23:57Z
    date copyright2011/10/01
    date issued2011
    identifier issn0739-0572
    identifier otherams-84530.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4227876
    description abstractfter the successful launches of the first two polar-orbiting satellites in a new Fengyun-3 (FY-3) series, FY-3A/B, into a morning- and afternoon-configured orbit in May 2008 and November 2010, respectively, China will launch its next three polar-orbiting satellites before 2020. The Microwave Temperature Sounder (MWTS) on the FY-3A/B satellites has four channels that have the same channel frequency as channels 3, 5, 7, and 9 of Advanced Microwave Sounding Unit-A (AMSU-A). Thus, the quality of the brightness temperature measurements from the FY-3A MWTS can be assessed using the AMSU-A brightness temperature observations from the NOAA-18 satellite. Overall, MWTS data compare favorably with AMSU-A data in terms of its global bias to NWP simulations. The standard deviations of global MWTS brightness temperatures are slightly larger than those of AMSU-A data. The scan-angle dependence of the brightness temperature bias is found to be symmetric for MWTS channel 3 as well as AMSU-A channel 7, and asymmetric for MWTS channels 2 and 4 and AMSU-A channels 5 and 9; there is a warm (cold) bias located at the beginning (end) of a scan line for all asymmetric channels except for MWTS channel 4. A major difference between the two instruments is that the MWTS biases in channels 3 and 4 are negative in low latitudes and positive in high latitudes, while the AMSU-A biases are negative in all latitudes. A detailed analysis of the data reveals that such a difference is closely related to the difference in the temperature dependence of biases between the two instruments. The AMSU-A biases are independent of the scene temperature, but MWTS biases vary with the earth scene brightness temperature. The root cause of the bias could be a combination of several factors, including solar contamination on its calibration target, detector nonlinearity, and the center frequency drift. This study further demonstrates the utility of a well-calibrated radiometer like AMSU-A for the assessment of a new instrument with NWP fields that are used as inputs to forward radiative transfer simulations.
    publisherAmerican Meteorological Society
    titleAssessments of Chinese Fengyun Microwave Temperature Sounder (MWTS) Measurements for Weather and Climate Applications
    typeJournal Paper
    journal volume28
    journal issue10
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/JTECH-D-11-00023.1
    journal fristpage1206
    journal lastpage1227
    treeJournal of Atmospheric and Oceanic Technology:;2011:;volume( 028 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian