YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Assessing NOAA-16 HIRS Radiance Accuracy Using Simultaneous Nadir Overpass Observations from AIRS

    Source: Journal of Atmospheric and Oceanic Technology:;2007:;volume( 024 ):;issue: 009::page 1546
    Author:
    Wang, Likun
    ,
    Cao, Changyong
    ,
    Ciren, Pubu
    DOI: 10.1175/JTECH2073.1
    Publisher: American Meteorological Society
    Abstract: The High-Resolution Infrared Radiation Sounder (HIRS) has been carried on NOAA satellites for more than two decades, and the HIRS data have been widely used for geophysical retrievals, climate studies, and radiance assimilation for numerical weather prediction models. However, given the legacy of the filter-wheel radiometer originally designed in the 1970s, the HIRS measurement accuracy is neither well documented nor well understood, despite the importance of this information for data users, instrument manufacturers, and calibration scientists. The advent of hyperspectral sounders, such as the Atmospheric Infrared Sounder (AIRS), and intersatellite calibration techniques makes it possible to independently assess the accuracy of the HIRS radiances. This study independently assesses the data quality and calibration accuracy of HIRS by comparing the radiances between HIRS on NOAA-16 and AIRS on Aqua with simultaneous nadir overpass (SNO) observations for the year 2004. The results suggest that the HIRS radiometric bias relative to the AIRS-convolved HIRS radiance is on the order of ?0.5 K, except channel 16, which has a bias of 0.8 K. For all eight spectrally overlapped channels, the observations by HIRS are warmer than the corresponding AIRS-convolved HIRS channel. Other than channel 16, the biases are temperature dependent. The root causes of the bias can be traced to a combination of the HIRS blackbody emissivity, nonlinearity, and spectral uncertainties. This study further demonstrates the utility of high-spectral-resolution radiance measurements for high-accuracy assessments of broadband radiometer calibration with the SNO observations.
    • Download: (2.051Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Assessing NOAA-16 HIRS Radiance Accuracy Using Simultaneous Nadir Overpass Observations from AIRS

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4227792
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorWang, Likun
    contributor authorCao, Changyong
    contributor authorCiren, Pubu
    date accessioned2017-06-09T17:23:42Z
    date available2017-06-09T17:23:42Z
    date copyright2007/09/01
    date issued2007
    identifier issn0739-0572
    identifier otherams-84454.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4227792
    description abstractThe High-Resolution Infrared Radiation Sounder (HIRS) has been carried on NOAA satellites for more than two decades, and the HIRS data have been widely used for geophysical retrievals, climate studies, and radiance assimilation for numerical weather prediction models. However, given the legacy of the filter-wheel radiometer originally designed in the 1970s, the HIRS measurement accuracy is neither well documented nor well understood, despite the importance of this information for data users, instrument manufacturers, and calibration scientists. The advent of hyperspectral sounders, such as the Atmospheric Infrared Sounder (AIRS), and intersatellite calibration techniques makes it possible to independently assess the accuracy of the HIRS radiances. This study independently assesses the data quality and calibration accuracy of HIRS by comparing the radiances between HIRS on NOAA-16 and AIRS on Aqua with simultaneous nadir overpass (SNO) observations for the year 2004. The results suggest that the HIRS radiometric bias relative to the AIRS-convolved HIRS radiance is on the order of ?0.5 K, except channel 16, which has a bias of 0.8 K. For all eight spectrally overlapped channels, the observations by HIRS are warmer than the corresponding AIRS-convolved HIRS channel. Other than channel 16, the biases are temperature dependent. The root causes of the bias can be traced to a combination of the HIRS blackbody emissivity, nonlinearity, and spectral uncertainties. This study further demonstrates the utility of high-spectral-resolution radiance measurements for high-accuracy assessments of broadband radiometer calibration with the SNO observations.
    publisherAmerican Meteorological Society
    titleAssessing NOAA-16 HIRS Radiance Accuracy Using Simultaneous Nadir Overpass Observations from AIRS
    typeJournal Paper
    journal volume24
    journal issue9
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/JTECH2073.1
    journal fristpage1546
    journal lastpage1561
    treeJournal of Atmospheric and Oceanic Technology:;2007:;volume( 024 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian