YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Improved Algorithm for the Operational Calibration of the High-Resolution Infrared Radiation Sounder

    Source: Journal of Atmospheric and Oceanic Technology:;2007:;volume( 024 ):;issue: 002::page 169
    Author:
    Cao, Changyong
    ,
    Jarva, Kenneth
    ,
    Ciren, Pubu
    DOI: 10.1175/JTECH2037.1
    Publisher: American Meteorological Society
    Abstract: Radiance data from the High-Resolution Infrared Radiation Sounder (HIRS) have been used routinely in both direct radiance assimilation for numerical weather prediction and climate change detection studies. The operational HIRS calibration algorithm is critical for producing accurate radiance to meet the user?s needs, and it has significant impacts on products at all levels. Since the HIRS does not calibrate every scan line, the calibration coefficients between calibration cycles have to be interpolated based on a number of assumptions. In the more than 25-yr history of operational HIRS calibration, several interpolation methods have been used and, unfortunately, depending on which method is used, these algorithms can produce HIRS level 1b radiance data with significant differences. By analyzing the relationship between the instrument self-emission and gain change during filter temperature fluctuations, in this paper a significant flaw in the previous operational calibration algorithm (version 3) is identified. This caused calibration errors greater than 0.5 K and periodically degraded the HIRS radiance data quality of NOAA-15, -16, and -17 between 1998 and 2005. A new HIRS calibration algorithm (version 4) is introduced to improve the calibration accuracy, along with better indicators for instrument noise in the level 1b data. The new algorithm has been validated in parallel tests before it became operational at NOAA/National Environmental Satellite Data and Information Service (NESDIS). Test results show that significant improvements in calibration accuracy can be achieved especially for NOAA-15/HIRS. Several areas of further calibration improvements are also identified. The new algorithm has been used for all operational satellites at NOAA/NESDIS since 28 April 2005.
    • Download: (614.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Improved Algorithm for the Operational Calibration of the High-Resolution Infrared Radiation Sounder

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4227754
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorCao, Changyong
    contributor authorJarva, Kenneth
    contributor authorCiren, Pubu
    date accessioned2017-06-09T17:23:37Z
    date available2017-06-09T17:23:37Z
    date copyright2007/02/01
    date issued2007
    identifier issn0739-0572
    identifier otherams-84420.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4227754
    description abstractRadiance data from the High-Resolution Infrared Radiation Sounder (HIRS) have been used routinely in both direct radiance assimilation for numerical weather prediction and climate change detection studies. The operational HIRS calibration algorithm is critical for producing accurate radiance to meet the user?s needs, and it has significant impacts on products at all levels. Since the HIRS does not calibrate every scan line, the calibration coefficients between calibration cycles have to be interpolated based on a number of assumptions. In the more than 25-yr history of operational HIRS calibration, several interpolation methods have been used and, unfortunately, depending on which method is used, these algorithms can produce HIRS level 1b radiance data with significant differences. By analyzing the relationship between the instrument self-emission and gain change during filter temperature fluctuations, in this paper a significant flaw in the previous operational calibration algorithm (version 3) is identified. This caused calibration errors greater than 0.5 K and periodically degraded the HIRS radiance data quality of NOAA-15, -16, and -17 between 1998 and 2005. A new HIRS calibration algorithm (version 4) is introduced to improve the calibration accuracy, along with better indicators for instrument noise in the level 1b data. The new algorithm has been validated in parallel tests before it became operational at NOAA/National Environmental Satellite Data and Information Service (NESDIS). Test results show that significant improvements in calibration accuracy can be achieved especially for NOAA-15/HIRS. Several areas of further calibration improvements are also identified. The new algorithm has been used for all operational satellites at NOAA/NESDIS since 28 April 2005.
    publisherAmerican Meteorological Society
    titleAn Improved Algorithm for the Operational Calibration of the High-Resolution Infrared Radiation Sounder
    typeJournal Paper
    journal volume24
    journal issue2
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/JTECH2037.1
    journal fristpage169
    journal lastpage181
    treeJournal of Atmospheric and Oceanic Technology:;2007:;volume( 024 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian