YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dual-Doppler Analysis in a Single Plane from an Airborne Platform

    Source: Journal of Atmospheric and Oceanic Technology:;2006:;volume( 023 ):;issue: 001::page 3
    Author:
    Leon, D.
    ,
    Vali, G.
    ,
    Lothon, M.
    DOI: 10.1175/JTECH1820.1
    Publisher: American Meteorological Society
    Abstract: A modified dual-Doppler analysis technique for use with airborne Doppler radars utilizing two fixed beams is presented. Although the data collected by such a system would ideally lie in the plane defined by the radar beam orientations and the aircraft velocity vector, variations in the aircraft attitude and drift angles lead to displacements between the radar observations and the idealized observation plane. These variations motivated the development of a formal framework in which an a priori velocity estimate is used in conjunction with the two Doppler velocity measurements to form a three-dimensional velocity estimate. Two velocity components, lying within or close to the observation plane, and therefore containing only a small contribution from the a priori velocity estimate, are then extracted from the three-dimensional velocity estimate. Advantages of using the three-dimensional framework include improved accuracy (when an a priori velocity estimate is available) and a framework for assessing the effects of cross-plane contamination on the retrieved velocity components. The velocity fields retrieved using the modified dual-Doppler analysis are affected by errors in the platform motion correction to the Doppler velocities, random noise in the mean Doppler velocity estimates, displacements between the radar beams (and between the radar beams and the idealized observation plane), and meteorological velocity variations about the a priori velocity estimate. Errors in the platform motion correction remain poorly characterized but are believed to be the largest source of error in many cases. However, these errors result primarily in biases (or low-frequency errors) in the retrieved velocity fields and therefore do not interfere with the ability to resolve actual velocity variations. Random noise in the mean Doppler velocity estimates increases dramatically with decreasing signal-to-noise ratio (SNR) (for SNR < 5 dB) and effectively limits the use of the single-plane dual-Doppler (SPDD) analysis to SNR > 0 dB. Displacements between the volumes sampled by the nadir and slanted beams can also be a significant source of error, especially at larger displacements from the aircraft. Errors resulting from meteorological velocity variations about the a priori velocity estimate tend to be small compared to the velocity variations of interest. The dual-Doppler analysis presented in this paper has been applied to retrieve two-dimensional velocity fields with a resolution of ?50 m using Doppler velocities collected using dual-beam configurations of the Wyoming Cloud Radar. Results are in horizontal and vertical planes for marine stratocumulus, cumulus congestus, and for the clear-air boundary layer.
    • Download: (3.037Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dual-Doppler Analysis in a Single Plane from an Airborne Platform

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4227515
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorLeon, D.
    contributor authorVali, G.
    contributor authorLothon, M.
    date accessioned2017-06-09T17:23:01Z
    date available2017-06-09T17:23:01Z
    date copyright2006/01/01
    date issued2006
    identifier issn0739-0572
    identifier otherams-84204.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4227515
    description abstractA modified dual-Doppler analysis technique for use with airborne Doppler radars utilizing two fixed beams is presented. Although the data collected by such a system would ideally lie in the plane defined by the radar beam orientations and the aircraft velocity vector, variations in the aircraft attitude and drift angles lead to displacements between the radar observations and the idealized observation plane. These variations motivated the development of a formal framework in which an a priori velocity estimate is used in conjunction with the two Doppler velocity measurements to form a three-dimensional velocity estimate. Two velocity components, lying within or close to the observation plane, and therefore containing only a small contribution from the a priori velocity estimate, are then extracted from the three-dimensional velocity estimate. Advantages of using the three-dimensional framework include improved accuracy (when an a priori velocity estimate is available) and a framework for assessing the effects of cross-plane contamination on the retrieved velocity components. The velocity fields retrieved using the modified dual-Doppler analysis are affected by errors in the platform motion correction to the Doppler velocities, random noise in the mean Doppler velocity estimates, displacements between the radar beams (and between the radar beams and the idealized observation plane), and meteorological velocity variations about the a priori velocity estimate. Errors in the platform motion correction remain poorly characterized but are believed to be the largest source of error in many cases. However, these errors result primarily in biases (or low-frequency errors) in the retrieved velocity fields and therefore do not interfere with the ability to resolve actual velocity variations. Random noise in the mean Doppler velocity estimates increases dramatically with decreasing signal-to-noise ratio (SNR) (for SNR < 5 dB) and effectively limits the use of the single-plane dual-Doppler (SPDD) analysis to SNR > 0 dB. Displacements between the volumes sampled by the nadir and slanted beams can also be a significant source of error, especially at larger displacements from the aircraft. Errors resulting from meteorological velocity variations about the a priori velocity estimate tend to be small compared to the velocity variations of interest. The dual-Doppler analysis presented in this paper has been applied to retrieve two-dimensional velocity fields with a resolution of ?50 m using Doppler velocities collected using dual-beam configurations of the Wyoming Cloud Radar. Results are in horizontal and vertical planes for marine stratocumulus, cumulus congestus, and for the clear-air boundary layer.
    publisherAmerican Meteorological Society
    titleDual-Doppler Analysis in a Single Plane from an Airborne Platform
    typeJournal Paper
    journal volume23
    journal issue1
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/JTECH1820.1
    journal fristpage3
    journal lastpage22
    treeJournal of Atmospheric and Oceanic Technology:;2006:;volume( 023 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian