Show simple item record

contributor authorHubbard, Kenneth G.
contributor authorYou, Jinsheng
date accessioned2017-06-09T17:22:56Z
date available2017-06-09T17:22:56Z
date copyright2005/10/01
date issued2005
identifier issn0739-0572
identifier otherams-84174.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4227481
description abstractBoth the spatial regression test (SRT) and inverse distance weighting (IDW) methods have been applied to provide estimates for the maximum air temperature (Tmax) and the minimum air temperature (Tmin) in the Applied Climate Information System (ACIS). This is critical to the processes of estimating missing data and identifying suspect data and is undertaken here to ensure quality data in ACIS. The SRT method was previously found to be superior to the IDW method; however, the sensitivity of the performance of both methods to input parameters has not been evaluated. A set of analyses is presented for both methods whereby the sensitivity to the radius of inclusion, the regression time window, the regression time offset, and the number of stations used to make the estimates are examined. Comparisons were also conducted between the SRT and the IDW methods. The performance of the SRT method stabilized when 10 or more stations were applied in the estimates. The optimal number of stations for the IDW method varies from only a few to 30. The results indicate that the best estimates obtained using the IDW method are still inferior to the worst estimates obtained using the SRT method.
publisherAmerican Meteorological Society
titleSensitivity Analysis of Quality Assurance Using the Spatial Regression Approach—A Case Study of the Maximum/Minimum Air Temperature
typeJournal Paper
journal volume22
journal issue10
journal titleJournal of Atmospheric and Oceanic Technology
identifier doi10.1175/JTECH1790.1
journal fristpage1520
journal lastpage1530
treeJournal of Atmospheric and Oceanic Technology:;2005:;volume( 022 ):;issue: 010
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record