YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Assimilation of Wind Profiler Data in the Canadian Meteorological Centre’s Analysis Systems

    Source: Journal of Atmospheric and Oceanic Technology:;2005:;volume( 022 ):;issue: 008::page 1181
    Author:
    St-James, Judy S.
    ,
    Laroche, Stéphane
    DOI: 10.1175/JTECH1765.1
    Publisher: American Meteorological Society
    Abstract: Real-time horizontal wind observations from the National Oceanic and Atmospheric Administration?s (NOAA?s) Profiler Network (NPN) are assessed in preparation for their assimilation in the Canadian Meteorological Centre (CMC) analysis systems. As a first step, radiosonde winds from 20 stations were compared to the central U.S. profiler stations over the 2001/02 winter season. It was found that profilers are at least as good as conventional radiosonde data. The 2001/02 winter season data were also used to examine the vertical correlation structure of the observation error for profilers. Using a statistical analysis of innovations, the observation error standard deviation of the wind components is estimated as 2.2 m s?1 and the vertical correlation length is approximately 500 m. These results suggest that the data are vertically correlated because they are available every 250 m. Therefore, a thinning process is proposed in which one out of three data are selected in the vertical for each station. Since January 2004, a close monitoring of NPN profiler data revealed significant errors at some stations in the lower and upper troposphere. Consequently, a monthly blacklist of NPN profilers is built based on data from the previous month. A data impact study with both the three-dimensional variational data assimilation (3DVAR) and four-dimensional variational data assimilation (4DVAR) analysis systems was conducted using data from the 2003/04 winter season in which the vertical thinning was tested. It was found that the vertical thinning improves slightly the 6-h forecast error, especially in the 4DVAR over the central United States in which 6 times more profilers are assimilated. The impact of the vertical thinning is found to be neutral in the 3DVAR. Also, the impact of profiler data is significant over the central U.S. domain compared to a control run with the only difference being the addition of profiler data. These results were sufficiently good to implement NPN profilers in both the CMC global and regional analysis systems with the thinning process in fall of 2004.
    • Download: (1.108Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Assimilation of Wind Profiler Data in the Canadian Meteorological Centre’s Analysis Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4227453
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorSt-James, Judy S.
    contributor authorLaroche, Stéphane
    date accessioned2017-06-09T17:22:51Z
    date available2017-06-09T17:22:51Z
    date copyright2005/08/01
    date issued2005
    identifier issn0739-0572
    identifier otherams-84149.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4227453
    description abstractReal-time horizontal wind observations from the National Oceanic and Atmospheric Administration?s (NOAA?s) Profiler Network (NPN) are assessed in preparation for their assimilation in the Canadian Meteorological Centre (CMC) analysis systems. As a first step, radiosonde winds from 20 stations were compared to the central U.S. profiler stations over the 2001/02 winter season. It was found that profilers are at least as good as conventional radiosonde data. The 2001/02 winter season data were also used to examine the vertical correlation structure of the observation error for profilers. Using a statistical analysis of innovations, the observation error standard deviation of the wind components is estimated as 2.2 m s?1 and the vertical correlation length is approximately 500 m. These results suggest that the data are vertically correlated because they are available every 250 m. Therefore, a thinning process is proposed in which one out of three data are selected in the vertical for each station. Since January 2004, a close monitoring of NPN profiler data revealed significant errors at some stations in the lower and upper troposphere. Consequently, a monthly blacklist of NPN profilers is built based on data from the previous month. A data impact study with both the three-dimensional variational data assimilation (3DVAR) and four-dimensional variational data assimilation (4DVAR) analysis systems was conducted using data from the 2003/04 winter season in which the vertical thinning was tested. It was found that the vertical thinning improves slightly the 6-h forecast error, especially in the 4DVAR over the central United States in which 6 times more profilers are assimilated. The impact of the vertical thinning is found to be neutral in the 3DVAR. Also, the impact of profiler data is significant over the central U.S. domain compared to a control run with the only difference being the addition of profiler data. These results were sufficiently good to implement NPN profilers in both the CMC global and regional analysis systems with the thinning process in fall of 2004.
    publisherAmerican Meteorological Society
    titleAssimilation of Wind Profiler Data in the Canadian Meteorological Centre’s Analysis Systems
    typeJournal Paper
    journal volume22
    journal issue8
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/JTECH1765.1
    journal fristpage1181
    journal lastpage1194
    treeJournal of Atmospheric and Oceanic Technology:;2005:;volume( 022 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian