YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Advanced Methods for Characterizing the Immersion Factor of Irradiance Sensors

    Source: Journal of Atmospheric and Oceanic Technology:;2005:;volume( 022 ):;issue: 006::page 757
    Author:
    Hooker, Stanford B.
    ,
    Zibordi, Giuseppe
    DOI: 10.1175/JTECH1736.1
    Publisher: American Meteorological Society
    Abstract: Two new immersion factor methods are evaluated by comparing them with the so-called traditional (or incremental) method. For the first method, the optical measurements taken at discrete water depths are substituted by continuous profiles created by removing the water from the tank used in the experimental procedure at a constant flow rate with a pump. In the second method, the commonly used large tank is replaced by a small water vessel with sidewall baffles, which permits the use of a quality-assured volume of water. The summary of the validation results produced for the different methods shows a significant convergence of the two new methods with the traditional method with differences generally well below 1%. The average repeatabilities for single-sensor characterizations (across seven wavelengths) of the three methods are very similar and approximately 0.5%. The evaluation of the continuous method demonstrates its full applicability in the determination of immersion factors with a significant time savings. The results obtained with the small water vessel demonstrate the possibility of significantly reducing the size of the tank (along with decreasing the execution time) and permitting a completely reproducible methodology (based on the use of pure water). The small tank approach readily permits the isolation and quantification of individual sources of uncertainty, the results of which confirm the following aspects of the general experimental methodology: (a) pure water is preferred over tap water, (b) the water should not be recycled (so it does not age), (c) bubbles should be removed from all wetted surfaces, (d) the water surface should be kept as clean as possible, (e) sidewall reflections can be properly minimized with internal baffles, and (f) a pure water characterization can be easily corrected to produce an appropriate seawater characterization. Within the context of experimental efficiency and reproducibility, this study suggests that the combination of a properly baffled small tank with a constant-flow pump would be an optimal system.
    • Download: (626.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Advanced Methods for Characterizing the Immersion Factor of Irradiance Sensors

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4227421
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorHooker, Stanford B.
    contributor authorZibordi, Giuseppe
    date accessioned2017-06-09T17:22:47Z
    date available2017-06-09T17:22:47Z
    date copyright2005/06/01
    date issued2005
    identifier issn0739-0572
    identifier otherams-84120.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4227421
    description abstractTwo new immersion factor methods are evaluated by comparing them with the so-called traditional (or incremental) method. For the first method, the optical measurements taken at discrete water depths are substituted by continuous profiles created by removing the water from the tank used in the experimental procedure at a constant flow rate with a pump. In the second method, the commonly used large tank is replaced by a small water vessel with sidewall baffles, which permits the use of a quality-assured volume of water. The summary of the validation results produced for the different methods shows a significant convergence of the two new methods with the traditional method with differences generally well below 1%. The average repeatabilities for single-sensor characterizations (across seven wavelengths) of the three methods are very similar and approximately 0.5%. The evaluation of the continuous method demonstrates its full applicability in the determination of immersion factors with a significant time savings. The results obtained with the small water vessel demonstrate the possibility of significantly reducing the size of the tank (along with decreasing the execution time) and permitting a completely reproducible methodology (based on the use of pure water). The small tank approach readily permits the isolation and quantification of individual sources of uncertainty, the results of which confirm the following aspects of the general experimental methodology: (a) pure water is preferred over tap water, (b) the water should not be recycled (so it does not age), (c) bubbles should be removed from all wetted surfaces, (d) the water surface should be kept as clean as possible, (e) sidewall reflections can be properly minimized with internal baffles, and (f) a pure water characterization can be easily corrected to produce an appropriate seawater characterization. Within the context of experimental efficiency and reproducibility, this study suggests that the combination of a properly baffled small tank with a constant-flow pump would be an optimal system.
    publisherAmerican Meteorological Society
    titleAdvanced Methods for Characterizing the Immersion Factor of Irradiance Sensors
    typeJournal Paper
    journal volume22
    journal issue6
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/JTECH1736.1
    journal fristpage757
    journal lastpage770
    treeJournal of Atmospheric and Oceanic Technology:;2005:;volume( 022 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian