YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Cloud Ice Crystal Classification Using a 95-GHz Polarimetric Radar

    Source: Journal of Atmospheric and Oceanic Technology:;2004:;volume( 021 ):;issue: 011::page 1679
    Author:
    Aydin, K.
    ,
    Singh, J.
    DOI: 10.1175/JTECH1671.1
    Publisher: American Meteorological Society
    Abstract: Two algorithms are presented for ice crystal classification using 95-GHz polarimetric radar observables and air temperature (T). Both are based on a fuzzy logic scheme. Ice crystals are classified as columnar crystals (CC), planar crystals (PC), mixtures of PC and small- to medium-sized aggregates and/or lightly to moderately rimed PC (PSAR), medium- to large-sized aggregates of PC, or densely rimed PC, or graupel-like snow or small lumpy graupel (PLARG), and graupel larger than about 2 mm (G). The 1D algorithm makes use of Zh, Zdr, LDRhv, and T, while the 2D algorithm incorporates the three radar observables in pairs, (Zdr, Zh), (LDRhv, Zh), and (Zdr, LDRhv), plus the temperature T. The range of values for each observable or pair of observables is derived from extensive modeling studies conducted earlier. The algorithms are tested using side-looking radar measurements from an aircraft, which was also equipped with particle probes producing simultaneous and nearly collocated shadow images of cloud ice crystals. The classification results from both algorithms agreed very well with the particle images. The two algorithms were in agreement by 89% in one case and 97% in the remaining three cases considered here. The most effective observable in the 1D algorithm was Zdr, and in the 2D algorithm the pair (Zdr, Zh). LDRhv had negligible effect in the 1D classification algorithm for the cases considered here. The temperature T was mainly effective in separating columnar crystals from the rest. The advantage of the 2D algorithm over the 1D algorithm was that it significantly reduced the dependence on T in two out of the four cases.
    • Download: (675.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Cloud Ice Crystal Classification Using a 95-GHz Polarimetric Radar

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4227350
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorAydin, K.
    contributor authorSingh, J.
    date accessioned2017-06-09T17:22:37Z
    date available2017-06-09T17:22:37Z
    date copyright2004/11/01
    date issued2004
    identifier issn0739-0572
    identifier otherams-84056.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4227350
    description abstractTwo algorithms are presented for ice crystal classification using 95-GHz polarimetric radar observables and air temperature (T). Both are based on a fuzzy logic scheme. Ice crystals are classified as columnar crystals (CC), planar crystals (PC), mixtures of PC and small- to medium-sized aggregates and/or lightly to moderately rimed PC (PSAR), medium- to large-sized aggregates of PC, or densely rimed PC, or graupel-like snow or small lumpy graupel (PLARG), and graupel larger than about 2 mm (G). The 1D algorithm makes use of Zh, Zdr, LDRhv, and T, while the 2D algorithm incorporates the three radar observables in pairs, (Zdr, Zh), (LDRhv, Zh), and (Zdr, LDRhv), plus the temperature T. The range of values for each observable or pair of observables is derived from extensive modeling studies conducted earlier. The algorithms are tested using side-looking radar measurements from an aircraft, which was also equipped with particle probes producing simultaneous and nearly collocated shadow images of cloud ice crystals. The classification results from both algorithms agreed very well with the particle images. The two algorithms were in agreement by 89% in one case and 97% in the remaining three cases considered here. The most effective observable in the 1D algorithm was Zdr, and in the 2D algorithm the pair (Zdr, Zh). LDRhv had negligible effect in the 1D classification algorithm for the cases considered here. The temperature T was mainly effective in separating columnar crystals from the rest. The advantage of the 2D algorithm over the 1D algorithm was that it significantly reduced the dependence on T in two out of the four cases.
    publisherAmerican Meteorological Society
    titleCloud Ice Crystal Classification Using a 95-GHz Polarimetric Radar
    typeJournal Paper
    journal volume21
    journal issue11
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/JTECH1671.1
    journal fristpage1679
    journal lastpage1688
    treeJournal of Atmospheric and Oceanic Technology:;2004:;volume( 021 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian