YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Axial-Flow Cyclone for Aircraft-Based Cloud Water Sampling

    Source: Journal of Atmospheric and Oceanic Technology:;2004:;volume( 021 ):;issue: 012::page 1825
    Author:
    Straub, Derek J.
    ,
    Collett, Jeffrey L.
    DOI: 10.1175/JTECH-1670.1
    Publisher: American Meteorological Society
    Abstract: A new aircraft-based cloud water collection system has been developed to provide samples of cloud water for chemical analysis. The collection system makes use of centrifugal separation in an axial-flow cyclone to remove cloud drops from the airstream. An automated sample storage system allows up to seven independent samples to be obtained during a single research flight. The entire collection system is housed in a Particle Measurement Systems (PMS) canister to permit the collector to be used on a range of research aircraft without extensive modification to the collector or the aircraft structure. Computational fluid dynamics (CFD) analysis was used extensively throughout the development of the new collector for component design and to predict internal flow dynamics. CFD-based cloud drop trajectory simulations provided an estimate of collection efficiency as a function of drop size. Based on the numerical modeling, the 50% cut diameter was predicted to be 8 ?m. Through a quantitative laboratory calibration using fluorescein-tagged monodisperse drops, CFD predictions of drop deposition patterns in the interior of the axial-flow cyclone were verified. The numerical and experimental evaluations were performed to ensure that the population of collected cloud drops is well characterized. Initial flight testing of the system occurred during the Dynamics and Chemistry of Marine Stratocumulus, Phase II (DYCOMS-II) field project in July 2001. Although the major components of the prototype collection system operated as expected during flight testing, sample collection rates were lower than expected because of the inefficient removal and storage of cloud water collected in the axial-flow cyclone. Actual sample collection rates ranged between 0.1 and 1.2 mL min?1.
    • Download: (1.451Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Axial-Flow Cyclone for Aircraft-Based Cloud Water Sampling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4227349
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorStraub, Derek J.
    contributor authorCollett, Jeffrey L.
    date accessioned2017-06-09T17:22:37Z
    date available2017-06-09T17:22:37Z
    date copyright2004/12/01
    date issued2004
    identifier issn0739-0572
    identifier otherams-84055.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4227349
    description abstractA new aircraft-based cloud water collection system has been developed to provide samples of cloud water for chemical analysis. The collection system makes use of centrifugal separation in an axial-flow cyclone to remove cloud drops from the airstream. An automated sample storage system allows up to seven independent samples to be obtained during a single research flight. The entire collection system is housed in a Particle Measurement Systems (PMS) canister to permit the collector to be used on a range of research aircraft without extensive modification to the collector or the aircraft structure. Computational fluid dynamics (CFD) analysis was used extensively throughout the development of the new collector for component design and to predict internal flow dynamics. CFD-based cloud drop trajectory simulations provided an estimate of collection efficiency as a function of drop size. Based on the numerical modeling, the 50% cut diameter was predicted to be 8 ?m. Through a quantitative laboratory calibration using fluorescein-tagged monodisperse drops, CFD predictions of drop deposition patterns in the interior of the axial-flow cyclone were verified. The numerical and experimental evaluations were performed to ensure that the population of collected cloud drops is well characterized. Initial flight testing of the system occurred during the Dynamics and Chemistry of Marine Stratocumulus, Phase II (DYCOMS-II) field project in July 2001. Although the major components of the prototype collection system operated as expected during flight testing, sample collection rates were lower than expected because of the inefficient removal and storage of cloud water collected in the axial-flow cyclone. Actual sample collection rates ranged between 0.1 and 1.2 mL min?1.
    publisherAmerican Meteorological Society
    titleAn Axial-Flow Cyclone for Aircraft-Based Cloud Water Sampling
    typeJournal Paper
    journal volume21
    journal issue12
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/JTECH-1670.1
    journal fristpage1825
    journal lastpage1839
    treeJournal of Atmospheric and Oceanic Technology:;2004:;volume( 021 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian