YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Computational Complexity and Parallel Scalability of Atmospheric Data Assimilation Algorithms

    Source: Journal of Atmospheric and Oceanic Technology:;2004:;volume( 021 ):;issue: 011::page 1689
    Author:
    Lyster, P. M.
    ,
    Guo, J.
    ,
    Clune, T.
    ,
    Larson, J. W.
    DOI: 10.1175/JTECH1636.1
    Publisher: American Meteorological Society
    Abstract: This paper quantifies the computational complexity and parallel scalability of two algorithms for four-dimensional data assimilation (4DDA) at NASA's Global Modeling and Assimilation Office (GMAO). The first, the Goddard Earth Observing System Data Assimilation System (GEOS DAS), uses an atmospheric general circulation model (GCM) and an observation-space-based analysis system, the Physical-Space Statistical Analysis System (PSAS). GEOS DAS is very similar to global meteorological weather forecasting data assimilation systems but is used at NASA for climate research. The second, the Kalman filter, uses a more consistent algorithm to determine the forecast error covariance matrix than does GEOS DAS. For atmospheric assimilation, the gridded dynamical fields typically have more than 106 variables; therefore, the full error covariance matrix may be in excess of a teraword. For the Kalman filter this problem will require petaflop s?1 computing to achieve effective throughput for scientific research.
    • Download: (312.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Computational Complexity and Parallel Scalability of Atmospheric Data Assimilation Algorithms

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4227333
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorLyster, P. M.
    contributor authorGuo, J.
    contributor authorClune, T.
    contributor authorLarson, J. W.
    date accessioned2017-06-09T17:22:34Z
    date available2017-06-09T17:22:34Z
    date copyright2004/11/01
    date issued2004
    identifier issn0739-0572
    identifier otherams-84041.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4227333
    description abstractThis paper quantifies the computational complexity and parallel scalability of two algorithms for four-dimensional data assimilation (4DDA) at NASA's Global Modeling and Assimilation Office (GMAO). The first, the Goddard Earth Observing System Data Assimilation System (GEOS DAS), uses an atmospheric general circulation model (GCM) and an observation-space-based analysis system, the Physical-Space Statistical Analysis System (PSAS). GEOS DAS is very similar to global meteorological weather forecasting data assimilation systems but is used at NASA for climate research. The second, the Kalman filter, uses a more consistent algorithm to determine the forecast error covariance matrix than does GEOS DAS. For atmospheric assimilation, the gridded dynamical fields typically have more than 106 variables; therefore, the full error covariance matrix may be in excess of a teraword. For the Kalman filter this problem will require petaflop s?1 computing to achieve effective throughput for scientific research.
    publisherAmerican Meteorological Society
    titleThe Computational Complexity and Parallel Scalability of Atmospheric Data Assimilation Algorithms
    typeJournal Paper
    journal volume21
    journal issue11
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/JTECH1636.1
    journal fristpage1689
    journal lastpage1700
    treeJournal of Atmospheric and Oceanic Technology:;2004:;volume( 021 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian