YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Curved Density Fronts: Cyclogeostrophic Adjustment and Frontogenesis

    Source: Journal of Physical Oceanography:;2016:;Volume( 046 ):;issue: 010::page 3193
    Author:
    Shakespeare, Callum J.
    DOI: 10.1175/JPO-D-16-0137.1
    Publisher: American Meteorological Society
    Abstract: urvature can play a significant role in the dynamics of density fronts at small scales and in low-latitude regions of the ocean. Fronts can be displaced from balance by rapid forcing and undergo an adjustment toward a more stable state or be strained and sharpened by surrounding flow in a process known as frontogenesis. This study investigates the role of curvature in adjustment and frontogenesis using the idealized configuration of an axisymmetric eddy and associated circular front. As a result of the curvature, the balanced state of this system is not geostrophic balance, where pressure and Coriolis forces exactly balance, but cyclogeostrophic balance, where pressure and Coriolis forces combine to supply a net inwards centripetal force on fluid parcels. The parameter range for which cyclogeostrophically balanced states exist for a given unbalanced initial condition is determined. This parameter range is smaller for anticyclonic fronts (i.e., fronts curved around a warm core), which have larger angular velocities than comparable straight fronts, implying they are more likely to break down during adjustment. The reverse is true for cyclonic fronts. A model for the sharpening of a curved front in a background strain flow, analogous to the Hoskins and Bretherton (1972) model for a straight front, is developed. Relative to a straight front subject to the same strain rate, vertical velocities are weaker for an anticyclonic front and stronger for a cyclonic front. Anticyclonic fronts collapse to a near discontinuity during frontogenesis far more rapidly than cyclonic fronts for the same strain rate.
    • Download: (2.171Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Curved Density Fronts: Cyclogeostrophic Adjustment and Frontogenesis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4227246
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorShakespeare, Callum J.
    date accessioned2017-06-09T17:22:15Z
    date available2017-06-09T17:22:15Z
    date copyright2016/10/01
    date issued2016
    identifier issn0022-3670
    identifier otherams-83963.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4227246
    description abstracturvature can play a significant role in the dynamics of density fronts at small scales and in low-latitude regions of the ocean. Fronts can be displaced from balance by rapid forcing and undergo an adjustment toward a more stable state or be strained and sharpened by surrounding flow in a process known as frontogenesis. This study investigates the role of curvature in adjustment and frontogenesis using the idealized configuration of an axisymmetric eddy and associated circular front. As a result of the curvature, the balanced state of this system is not geostrophic balance, where pressure and Coriolis forces exactly balance, but cyclogeostrophic balance, where pressure and Coriolis forces combine to supply a net inwards centripetal force on fluid parcels. The parameter range for which cyclogeostrophically balanced states exist for a given unbalanced initial condition is determined. This parameter range is smaller for anticyclonic fronts (i.e., fronts curved around a warm core), which have larger angular velocities than comparable straight fronts, implying they are more likely to break down during adjustment. The reverse is true for cyclonic fronts. A model for the sharpening of a curved front in a background strain flow, analogous to the Hoskins and Bretherton (1972) model for a straight front, is developed. Relative to a straight front subject to the same strain rate, vertical velocities are weaker for an anticyclonic front and stronger for a cyclonic front. Anticyclonic fronts collapse to a near discontinuity during frontogenesis far more rapidly than cyclonic fronts for the same strain rate.
    publisherAmerican Meteorological Society
    titleCurved Density Fronts: Cyclogeostrophic Adjustment and Frontogenesis
    typeJournal Paper
    journal volume46
    journal issue10
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO-D-16-0137.1
    journal fristpage3193
    journal lastpage3207
    treeJournal of Physical Oceanography:;2016:;Volume( 046 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian