YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Effect of Stokes Drift and Transient Rip Currents on the Inner Shelf. Part II: With Stratification

    Source: Journal of Physical Oceanography:;2016:;Volume( 047 ):;issue: 001::page 243
    Author:
    Kumar, Nirnimesh
    ,
    Feddersen, Falk
    DOI: 10.1175/JPO-D-16-0077.1
    Publisher: American Meteorological Society
    Abstract: his is Part II of a two-part study focused on Stokes drift and transient rip current (TRC) effects on the unstratified (Part I) and stratified (this paper) inner shelf. Part I focuses on funwaveC?Coupled Ocean?Atmosphere?Wave?Sediment Transport (COAWST) coupling and TRC effects on mixing and exchange on an unstratified inner shelf. Here, two simulations (R3 and R4) are performed on a stratified inner shelf and surfzone with typical bathymetry, stratification, and wave conditions. R3 is a COAWST-only simulation (no TRCs), while R4 has funwaveC?COAWST coupling (with TRCs). In R4, TRCs lead to patchy, near-surface cooling, vertical isotherm displacement, and increased water column mixing. For both R3 and R4, the mean Lagrangian circulation has two nearly isolated surfzones and inner-shelf overturning circulation cells, with a stronger, R4, inner-shelf circulation cell. The R4, inner-shelf, vertical velocity variability is 2?3 times stronger than a simulation with TRCs and no stratification. Relative to R3, R4 eddy diffusivity is strongly elevated out to three surfzone widths offshore due to TRCs and TRC-induced density overturns. The R4 inner-shelf stratification is reduced nearshore, and mean isotherms slope more strongly than R3 because of the TRC-enhanced irreversible mixing. At six surfzone widths offshore, both R3 and R4 are in geostrophic balance, explaining the stratified (summertime) observed deviation from Stokes?Coriolis balance. In this region, baroclinic pressure gradients induced by sloping isotherms induce an alongshore geostrophic jet offshore, strongest in R4. In R4, TRCs result in an enhanced (2?10 times) cross-shore exchange velocity across the entire inner shelf, relative to R3. Accurate, stratified, inner-shelf simulations of pollution, larval, or sediment transport must include transient rip currents.
    • Download: (12.92Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Effect of Stokes Drift and Transient Rip Currents on the Inner Shelf. Part II: With Stratification

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4227208
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorKumar, Nirnimesh
    contributor authorFeddersen, Falk
    date accessioned2017-06-09T17:22:08Z
    date available2017-06-09T17:22:08Z
    date copyright2017/01/01
    date issued2016
    identifier issn0022-3670
    identifier otherams-83929.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4227208
    description abstracthis is Part II of a two-part study focused on Stokes drift and transient rip current (TRC) effects on the unstratified (Part I) and stratified (this paper) inner shelf. Part I focuses on funwaveC?Coupled Ocean?Atmosphere?Wave?Sediment Transport (COAWST) coupling and TRC effects on mixing and exchange on an unstratified inner shelf. Here, two simulations (R3 and R4) are performed on a stratified inner shelf and surfzone with typical bathymetry, stratification, and wave conditions. R3 is a COAWST-only simulation (no TRCs), while R4 has funwaveC?COAWST coupling (with TRCs). In R4, TRCs lead to patchy, near-surface cooling, vertical isotherm displacement, and increased water column mixing. For both R3 and R4, the mean Lagrangian circulation has two nearly isolated surfzones and inner-shelf overturning circulation cells, with a stronger, R4, inner-shelf circulation cell. The R4, inner-shelf, vertical velocity variability is 2?3 times stronger than a simulation with TRCs and no stratification. Relative to R3, R4 eddy diffusivity is strongly elevated out to three surfzone widths offshore due to TRCs and TRC-induced density overturns. The R4 inner-shelf stratification is reduced nearshore, and mean isotherms slope more strongly than R3 because of the TRC-enhanced irreversible mixing. At six surfzone widths offshore, both R3 and R4 are in geostrophic balance, explaining the stratified (summertime) observed deviation from Stokes?Coriolis balance. In this region, baroclinic pressure gradients induced by sloping isotherms induce an alongshore geostrophic jet offshore, strongest in R4. In R4, TRCs result in an enhanced (2?10 times) cross-shore exchange velocity across the entire inner shelf, relative to R3. Accurate, stratified, inner-shelf simulations of pollution, larval, or sediment transport must include transient rip currents.
    publisherAmerican Meteorological Society
    titleThe Effect of Stokes Drift and Transient Rip Currents on the Inner Shelf. Part II: With Stratification
    typeJournal Paper
    journal volume47
    journal issue1
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO-D-16-0077.1
    journal fristpage243
    journal lastpage260
    treeJournal of Physical Oceanography:;2016:;Volume( 047 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian