YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Effect of Stokes Drift and Transient Rip Currents on the Inner Shelf. Part I: No Stratification

    Source: Journal of Physical Oceanography:;2016:;Volume( 047 ):;issue: 001::page 227
    Author:
    Kumar, Nirnimesh
    ,
    Feddersen, Falk
    DOI: 10.1175/JPO-D-16-0076.1
    Publisher: American Meteorological Society
    Abstract: his is part one of a two-part study focused on Stokes drift and transient rip current (TRC) effects on the unstratified (this paper) and stratified (see Part II) inner shelf. A TRC-generating, wave-resolving model funwaveC is coupled to the 3D, wave-averaged wave and circulation model Coupled Ocean?Atmosphere?Wave?Sediment Transport (COAWST). Two simulations (R1 and R2) are performed on an unstratified inner shelf and surfzone with typical bathymetry and wave conditions. R1 is a COAWST-only simulation (no TRCs), while R2 has funwaveC?COAWST coupling (with TRCs). R2 and funwaveC vertical vorticity (eddy) statistics are similar, indicating that the model coupling accurately generates TRCs, with TRC-induced eddies out to four surfzone widths offshore. R1 has a two-layered, inner-shelf-to-surfzone-connected, mean Lagrangian circulation, while R2 has separate inner shelf and surfzone circulation cells. The R2, TRC-induced, cross-shore and vertical eddy velocities are stronger than the R1 or R2 mean Lagrangian velocity out to four surfzone widths offshore. The R2, inner-shelf, mean, vertical eddy diffusivity is an order of magnitude larger than R1 out to four surfzone widths offshore. Both R1 and R2 are in a Stokes?Coriolis balance at six surfzone widths offshore, as is R1 at three surfzone widths offshore. For R2, TRC-induced horizontal advection and vertical mixing dominate the cross-shore momentum dynamics at three surfzone widths offshore. The R2 surfzone and inner-shelf cross-shore exchange velocity is 2?10 times larger for R1 because of the TRC-induced stirring. Accurate, unstratified, inner-shelf simulations of pollution, larval, or sediment transport must include transient rip currents. In Part II, the effects of Stokes drift and TRCs on the stratified inner shelf are examined.
    • Download: (3.746Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Effect of Stokes Drift and Transient Rip Currents on the Inner Shelf. Part I: No Stratification

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4227207
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorKumar, Nirnimesh
    contributor authorFeddersen, Falk
    date accessioned2017-06-09T17:22:08Z
    date available2017-06-09T17:22:08Z
    date copyright2017/01/01
    date issued2016
    identifier issn0022-3670
    identifier otherams-83928.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4227207
    description abstracthis is part one of a two-part study focused on Stokes drift and transient rip current (TRC) effects on the unstratified (this paper) and stratified (see Part II) inner shelf. A TRC-generating, wave-resolving model funwaveC is coupled to the 3D, wave-averaged wave and circulation model Coupled Ocean?Atmosphere?Wave?Sediment Transport (COAWST). Two simulations (R1 and R2) are performed on an unstratified inner shelf and surfzone with typical bathymetry and wave conditions. R1 is a COAWST-only simulation (no TRCs), while R2 has funwaveC?COAWST coupling (with TRCs). R2 and funwaveC vertical vorticity (eddy) statistics are similar, indicating that the model coupling accurately generates TRCs, with TRC-induced eddies out to four surfzone widths offshore. R1 has a two-layered, inner-shelf-to-surfzone-connected, mean Lagrangian circulation, while R2 has separate inner shelf and surfzone circulation cells. The R2, TRC-induced, cross-shore and vertical eddy velocities are stronger than the R1 or R2 mean Lagrangian velocity out to four surfzone widths offshore. The R2, inner-shelf, mean, vertical eddy diffusivity is an order of magnitude larger than R1 out to four surfzone widths offshore. Both R1 and R2 are in a Stokes?Coriolis balance at six surfzone widths offshore, as is R1 at three surfzone widths offshore. For R2, TRC-induced horizontal advection and vertical mixing dominate the cross-shore momentum dynamics at three surfzone widths offshore. The R2 surfzone and inner-shelf cross-shore exchange velocity is 2?10 times larger for R1 because of the TRC-induced stirring. Accurate, unstratified, inner-shelf simulations of pollution, larval, or sediment transport must include transient rip currents. In Part II, the effects of Stokes drift and TRCs on the stratified inner shelf are examined.
    publisherAmerican Meteorological Society
    titleThe Effect of Stokes Drift and Transient Rip Currents on the Inner Shelf. Part I: No Stratification
    typeJournal Paper
    journal volume47
    journal issue1
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO-D-16-0076.1
    journal fristpage227
    journal lastpage241
    treeJournal of Physical Oceanography:;2016:;Volume( 047 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian