YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On the Origin of a Chain of Eddies in the Gulf of Eilat/Aqaba

    Source: Journal of Physical Oceanography:;2016:;Volume( 046 ):;issue: 008::page 2269
    Author:
    Biton, Eli
    ,
    Gildor, Hezi
    DOI: 10.1175/JPO-D-15-0208.1
    Publisher: American Meteorological Society
    Abstract: he Gulf of Eilat/Aqaba is a terminal, elongated basin that exchanges water with the northern Red Sea via the Straits of Tiran. This study used energy budgets of mean kinetic energy (MKE) and eddy kinetic energy (EKE; differentiated by a simple horizontal averaging filter), instability analysis, and numerical simulations to study the horizontal circulation of the gulf, which is characterized by the existence of a chain of eddies along its main axis. The kinetic energy is predominantly in the form of EKE. Energy conversion between MKE and EKE is negligible where the main sources for both energy reservoirs are the conversions from the available potential energy (APE). This term is balanced by the work done by pressure at the straits in case of MKE and by dissipation in the case of EKE. The MKE balance represents the coupling between the exchange flow at the straits and the wintertime dense water formation. The dense water exits through the straits while sinking adiabatically along the gulf. The strong variation in the shoreline/bathymetry triggers a baroclinic instability that enhances the eddy activity in the gulf. Thus, the baroclinic instability is an effective mechanism that transfers energy from the APE to the EKE. The EKE?APE conversion term involves vertical adiabatic motions that occur through the upwelling of relatively warm water in anticyclonic circulation regions and downwelling of colder water in adjacent regions with cyclonic circulation. Through these processes, the horizontal circulation is powered by the energy transferred from the APE. This explains the coupling between the temperature gradient and the eddy formation along the gulf.
    • Download: (1.678Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On the Origin of a Chain of Eddies in the Gulf of Eilat/Aqaba

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4227123
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorBiton, Eli
    contributor authorGildor, Hezi
    date accessioned2017-06-09T17:21:53Z
    date available2017-06-09T17:21:53Z
    date copyright2016/08/01
    date issued2016
    identifier issn0022-3670
    identifier otherams-83852.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4227123
    description abstracthe Gulf of Eilat/Aqaba is a terminal, elongated basin that exchanges water with the northern Red Sea via the Straits of Tiran. This study used energy budgets of mean kinetic energy (MKE) and eddy kinetic energy (EKE; differentiated by a simple horizontal averaging filter), instability analysis, and numerical simulations to study the horizontal circulation of the gulf, which is characterized by the existence of a chain of eddies along its main axis. The kinetic energy is predominantly in the form of EKE. Energy conversion between MKE and EKE is negligible where the main sources for both energy reservoirs are the conversions from the available potential energy (APE). This term is balanced by the work done by pressure at the straits in case of MKE and by dissipation in the case of EKE. The MKE balance represents the coupling between the exchange flow at the straits and the wintertime dense water formation. The dense water exits through the straits while sinking adiabatically along the gulf. The strong variation in the shoreline/bathymetry triggers a baroclinic instability that enhances the eddy activity in the gulf. Thus, the baroclinic instability is an effective mechanism that transfers energy from the APE to the EKE. The EKE?APE conversion term involves vertical adiabatic motions that occur through the upwelling of relatively warm water in anticyclonic circulation regions and downwelling of colder water in adjacent regions with cyclonic circulation. Through these processes, the horizontal circulation is powered by the energy transferred from the APE. This explains the coupling between the temperature gradient and the eddy formation along the gulf.
    publisherAmerican Meteorological Society
    titleOn the Origin of a Chain of Eddies in the Gulf of Eilat/Aqaba
    typeJournal Paper
    journal volume46
    journal issue8
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO-D-15-0208.1
    journal fristpage2269
    journal lastpage2284
    treeJournal of Physical Oceanography:;2016:;Volume( 046 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian