YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Using Energy Dissipation Rate to Obtain Active Whitecap Fraction

    Source: Journal of Physical Oceanography:;2015:;Volume( 046 ):;issue: 002::page 461
    Author:
    Anguelova, Magdalena D.
    ,
    Hwang, Paul A.
    DOI: 10.1175/JPO-D-15-0069.1
    Publisher: American Meteorological Society
    Abstract: ctive and total whitecap fractions quantify the spatial extent of oceanic whitecaps in different lifetime stages. Total whitecap fraction W includes both the dynamic foam patches of the initial breaking and the static foam patches during whitecap decay. Dynamic air?sea processes in the upper ocean are best parameterized in terms of active whitecap fraction WA associated with actively breaking crests. The conventional intensity threshold approach used to extract WA from photographs is subjective, which contributes to the wide spread of WA data. A novel approach of obtaining WA from energy dissipation rate ε is proposed. An expression for WA is derived in terms of energy dissipation rate WA(ε) on the basis of the Phillips concept of breaking crest length distribution. This approach allows more objective determination of WA using the breaker kinematic and dynamic properties yet avoids the use of measuring breaking crest distribution from photographs. The feasibility of using WA(ε) is demonstrated with one possible implementation using buoy data and a parametric model for the energy dissipation rate. Results from WA(ε) are compared to WA from photographic data. Sensitivity analysis quantifies variations in WA estimates caused by different parameter choices in the WA(ε) expression. The breaking strength parameter b has the greatest influence on the WA(ε) estimates, followed by the breaker minimal speed and bubble persistence time. The merits and caveats of the novel approach, possible improvements, and implications for using the WA(ε) expression to extract WA from satellite-based radiometric measurements of W are discussed.
    • Download: (2.067Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Using Energy Dissipation Rate to Obtain Active Whitecap Fraction

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4227017
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorAnguelova, Magdalena D.
    contributor authorHwang, Paul A.
    date accessioned2017-06-09T17:21:27Z
    date available2017-06-09T17:21:27Z
    date copyright2016/02/01
    date issued2015
    identifier issn0022-3670
    identifier otherams-83757.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4227017
    description abstractctive and total whitecap fractions quantify the spatial extent of oceanic whitecaps in different lifetime stages. Total whitecap fraction W includes both the dynamic foam patches of the initial breaking and the static foam patches during whitecap decay. Dynamic air?sea processes in the upper ocean are best parameterized in terms of active whitecap fraction WA associated with actively breaking crests. The conventional intensity threshold approach used to extract WA from photographs is subjective, which contributes to the wide spread of WA data. A novel approach of obtaining WA from energy dissipation rate ε is proposed. An expression for WA is derived in terms of energy dissipation rate WA(ε) on the basis of the Phillips concept of breaking crest length distribution. This approach allows more objective determination of WA using the breaker kinematic and dynamic properties yet avoids the use of measuring breaking crest distribution from photographs. The feasibility of using WA(ε) is demonstrated with one possible implementation using buoy data and a parametric model for the energy dissipation rate. Results from WA(ε) are compared to WA from photographic data. Sensitivity analysis quantifies variations in WA estimates caused by different parameter choices in the WA(ε) expression. The breaking strength parameter b has the greatest influence on the WA(ε) estimates, followed by the breaker minimal speed and bubble persistence time. The merits and caveats of the novel approach, possible improvements, and implications for using the WA(ε) expression to extract WA from satellite-based radiometric measurements of W are discussed.
    publisherAmerican Meteorological Society
    titleUsing Energy Dissipation Rate to Obtain Active Whitecap Fraction
    typeJournal Paper
    journal volume46
    journal issue2
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO-D-15-0069.1
    journal fristpage461
    journal lastpage481
    treeJournal of Physical Oceanography:;2015:;Volume( 046 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian