YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Salt Dynamics in Well-Mixed Estuaries: Importance of Advection by Tides

    Source: Journal of Physical Oceanography:;2016:;Volume( 046 ):;issue: 005::page 1457
    Author:
    Wei, Xiaoyan
    ,
    Schramkowski, George P.
    ,
    Schuttelaars, Henk M.
    DOI: 10.1175/JPO-D-15-0045.1
    Publisher: American Meteorological Society
    Abstract: nderstanding salt dynamics is important to adequately model salt intrusion, baroclinic forcing, and sediment transport. In this paper, the importance of the residual salt transport due to tidal advection in well-mixed tidal estuaries is studied. The water motion is resolved in a consistent way with a width-averaged analytical model, coupled to an advection?diffusion equation describing the salt dynamics. The residual salt balance obtained from the coupled model shows that the seaward salt transport driven by river discharge is balanced by the landward salt transport due to tidal advection and horizontal diffusion. It is found that the tidal advection behaves as a diffusion process, and this contribution is named tidal advective diffusion. The horizontal diffusion parameterizes processes not explicitly resolved in the model and is called the prescribed diffusion. The tidal advective diffusion results from the correlation between the tidal velocity and salinity and can be explicitly calculated with the dominant semidiurnal water motion. The sensitivity analysis shows that tidal advective diffusivity increases with increasing bed roughness and decreasing vertical eddy viscosity. Furthermore, tidal advective diffusivity reaches its maximum for moderate water depth and moderate convergence length. The relative importance of tidal advective diffusion is investigated using the residual salt balance, with the prescribed diffusion coefficient obtained from the measured salinity field. The tidal advective diffusion dominates the residual salt transport in the Scheldt estuary, and other processes significantly contribute to the residual salt transport in the Delaware estuary and the Columbia estuary.
    • Download: (1.991Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Salt Dynamics in Well-Mixed Estuaries: Importance of Advection by Tides

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4226996
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorWei, Xiaoyan
    contributor authorSchramkowski, George P.
    contributor authorSchuttelaars, Henk M.
    date accessioned2017-06-09T17:21:23Z
    date available2017-06-09T17:21:23Z
    date copyright2016/05/01
    date issued2016
    identifier issn0022-3670
    identifier otherams-83738.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4226996
    description abstractnderstanding salt dynamics is important to adequately model salt intrusion, baroclinic forcing, and sediment transport. In this paper, the importance of the residual salt transport due to tidal advection in well-mixed tidal estuaries is studied. The water motion is resolved in a consistent way with a width-averaged analytical model, coupled to an advection?diffusion equation describing the salt dynamics. The residual salt balance obtained from the coupled model shows that the seaward salt transport driven by river discharge is balanced by the landward salt transport due to tidal advection and horizontal diffusion. It is found that the tidal advection behaves as a diffusion process, and this contribution is named tidal advective diffusion. The horizontal diffusion parameterizes processes not explicitly resolved in the model and is called the prescribed diffusion. The tidal advective diffusion results from the correlation between the tidal velocity and salinity and can be explicitly calculated with the dominant semidiurnal water motion. The sensitivity analysis shows that tidal advective diffusivity increases with increasing bed roughness and decreasing vertical eddy viscosity. Furthermore, tidal advective diffusivity reaches its maximum for moderate water depth and moderate convergence length. The relative importance of tidal advective diffusion is investigated using the residual salt balance, with the prescribed diffusion coefficient obtained from the measured salinity field. The tidal advective diffusion dominates the residual salt transport in the Scheldt estuary, and other processes significantly contribute to the residual salt transport in the Delaware estuary and the Columbia estuary.
    publisherAmerican Meteorological Society
    titleSalt Dynamics in Well-Mixed Estuaries: Importance of Advection by Tides
    typeJournal Paper
    journal volume46
    journal issue5
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO-D-15-0045.1
    journal fristpage1457
    journal lastpage1475
    treeJournal of Physical Oceanography:;2016:;Volume( 046 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian