Salt Dynamics in Well-Mixed Estuaries: Importance of Advection by TidesSource: Journal of Physical Oceanography:;2016:;Volume( 046 ):;issue: 005::page 1457DOI: 10.1175/JPO-D-15-0045.1Publisher: American Meteorological Society
Abstract: nderstanding salt dynamics is important to adequately model salt intrusion, baroclinic forcing, and sediment transport. In this paper, the importance of the residual salt transport due to tidal advection in well-mixed tidal estuaries is studied. The water motion is resolved in a consistent way with a width-averaged analytical model, coupled to an advection?diffusion equation describing the salt dynamics. The residual salt balance obtained from the coupled model shows that the seaward salt transport driven by river discharge is balanced by the landward salt transport due to tidal advection and horizontal diffusion. It is found that the tidal advection behaves as a diffusion process, and this contribution is named tidal advective diffusion. The horizontal diffusion parameterizes processes not explicitly resolved in the model and is called the prescribed diffusion. The tidal advective diffusion results from the correlation between the tidal velocity and salinity and can be explicitly calculated with the dominant semidiurnal water motion. The sensitivity analysis shows that tidal advective diffusivity increases with increasing bed roughness and decreasing vertical eddy viscosity. Furthermore, tidal advective diffusivity reaches its maximum for moderate water depth and moderate convergence length. The relative importance of tidal advective diffusion is investigated using the residual salt balance, with the prescribed diffusion coefficient obtained from the measured salinity field. The tidal advective diffusion dominates the residual salt transport in the Scheldt estuary, and other processes significantly contribute to the residual salt transport in the Delaware estuary and the Columbia estuary.
|
Collections
Show full item record
contributor author | Wei, Xiaoyan | |
contributor author | Schramkowski, George P. | |
contributor author | Schuttelaars, Henk M. | |
date accessioned | 2017-06-09T17:21:23Z | |
date available | 2017-06-09T17:21:23Z | |
date copyright | 2016/05/01 | |
date issued | 2016 | |
identifier issn | 0022-3670 | |
identifier other | ams-83738.pdf | |
identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4226996 | |
description abstract | nderstanding salt dynamics is important to adequately model salt intrusion, baroclinic forcing, and sediment transport. In this paper, the importance of the residual salt transport due to tidal advection in well-mixed tidal estuaries is studied. The water motion is resolved in a consistent way with a width-averaged analytical model, coupled to an advection?diffusion equation describing the salt dynamics. The residual salt balance obtained from the coupled model shows that the seaward salt transport driven by river discharge is balanced by the landward salt transport due to tidal advection and horizontal diffusion. It is found that the tidal advection behaves as a diffusion process, and this contribution is named tidal advective diffusion. The horizontal diffusion parameterizes processes not explicitly resolved in the model and is called the prescribed diffusion. The tidal advective diffusion results from the correlation between the tidal velocity and salinity and can be explicitly calculated with the dominant semidiurnal water motion. The sensitivity analysis shows that tidal advective diffusivity increases with increasing bed roughness and decreasing vertical eddy viscosity. Furthermore, tidal advective diffusivity reaches its maximum for moderate water depth and moderate convergence length. The relative importance of tidal advective diffusion is investigated using the residual salt balance, with the prescribed diffusion coefficient obtained from the measured salinity field. The tidal advective diffusion dominates the residual salt transport in the Scheldt estuary, and other processes significantly contribute to the residual salt transport in the Delaware estuary and the Columbia estuary. | |
publisher | American Meteorological Society | |
title | Salt Dynamics in Well-Mixed Estuaries: Importance of Advection by Tides | |
type | Journal Paper | |
journal volume | 46 | |
journal issue | 5 | |
journal title | Journal of Physical Oceanography | |
identifier doi | 10.1175/JPO-D-15-0045.1 | |
journal fristpage | 1457 | |
journal lastpage | 1475 | |
tree | Journal of Physical Oceanography:;2016:;Volume( 046 ):;issue: 005 | |
contenttype | Fulltext |