YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Diagnosing Isopycnal Diffusivity in an Eddying, Idealized Midlatitude Ocean Basin via Lagrangian, in Situ, Global, High-Performance Particle Tracking (LIGHT)

    Source: Journal of Physical Oceanography:;2015:;Volume( 045 ):;issue: 008::page 2114
    Author:
    Wolfram, Phillip J.
    ,
    Ringler, Todd D.
    ,
    Maltrud, Mathew E.
    ,
    Jacobsen, Douglas W.
    ,
    Petersen, Mark R.
    DOI: 10.1175/JPO-D-14-0260.1
    Publisher: American Meteorological Society
    Abstract: sopycnal diffusivity due to stirring by mesoscale eddies in an idealized, wind-forced, eddying, midlatitude ocean basin is computed using Lagrangian, in Situ, Global, High-Performance Particle Tracking (LIGHT). Simulation is performed via LIGHT within the Model for Prediction across Scales Ocean (MPAS-O). Simulations are performed at 4-, 8-, 16-, and 32-km resolution, where the first Rossby radius of deformation (RRD) is approximately 30 km. Scalar and tensor diffusivities are estimated at each resolution based on 30 ensemble members using particle cluster statistics. Each ensemble member is composed of 303 665 particles distributed across five potential density surfaces. Diffusivity dependence upon model resolution, velocity spatial scale, and buoyancy surface is quantified and compared with mixing length theory. The spatial structure of diffusivity ranges over approximately two orders of magnitude with values of O(105) m2 s?1 in the region of western boundary current separation to O(103) m2 s?1 in the eastern region of the basin. Dominant mixing occurs at scales twice the size of the first RRD. Model resolution at scales finer than the RRD is necessary to obtain sufficient model fidelity at scales between one and four RRD to accurately represent mixing. Mixing length scaling with eddy kinetic energy and the Lagrangian time scale yield mixing efficiencies that typically range between 0.4 and 0.8. A reduced mixing length in the eastern region of the domain relative to the west suggests there are different mixing regimes outside the baroclinic jet region.
    • Download: (15.18Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Diagnosing Isopycnal Diffusivity in an Eddying, Idealized Midlatitude Ocean Basin via Lagrangian, in Situ, Global, High-Performance Particle Tracking (LIGHT)

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4226968
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorWolfram, Phillip J.
    contributor authorRingler, Todd D.
    contributor authorMaltrud, Mathew E.
    contributor authorJacobsen, Douglas W.
    contributor authorPetersen, Mark R.
    date accessioned2017-06-09T17:21:18Z
    date available2017-06-09T17:21:18Z
    date copyright2015/08/01
    date issued2015
    identifier issn0022-3670
    identifier otherams-83712.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4226968
    description abstractsopycnal diffusivity due to stirring by mesoscale eddies in an idealized, wind-forced, eddying, midlatitude ocean basin is computed using Lagrangian, in Situ, Global, High-Performance Particle Tracking (LIGHT). Simulation is performed via LIGHT within the Model for Prediction across Scales Ocean (MPAS-O). Simulations are performed at 4-, 8-, 16-, and 32-km resolution, where the first Rossby radius of deformation (RRD) is approximately 30 km. Scalar and tensor diffusivities are estimated at each resolution based on 30 ensemble members using particle cluster statistics. Each ensemble member is composed of 303 665 particles distributed across five potential density surfaces. Diffusivity dependence upon model resolution, velocity spatial scale, and buoyancy surface is quantified and compared with mixing length theory. The spatial structure of diffusivity ranges over approximately two orders of magnitude with values of O(105) m2 s?1 in the region of western boundary current separation to O(103) m2 s?1 in the eastern region of the basin. Dominant mixing occurs at scales twice the size of the first RRD. Model resolution at scales finer than the RRD is necessary to obtain sufficient model fidelity at scales between one and four RRD to accurately represent mixing. Mixing length scaling with eddy kinetic energy and the Lagrangian time scale yield mixing efficiencies that typically range between 0.4 and 0.8. A reduced mixing length in the eastern region of the domain relative to the west suggests there are different mixing regimes outside the baroclinic jet region.
    publisherAmerican Meteorological Society
    titleDiagnosing Isopycnal Diffusivity in an Eddying, Idealized Midlatitude Ocean Basin via Lagrangian, in Situ, Global, High-Performance Particle Tracking (LIGHT)
    typeJournal Paper
    journal volume45
    journal issue8
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO-D-14-0260.1
    journal fristpage2114
    journal lastpage2133
    treeJournal of Physical Oceanography:;2015:;Volume( 045 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian