YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Water Mass Transformations Driven by Ekman Upwelling and Surface Warming in Subpolar Gyres

    Source: Journal of Physical Oceanography:;2015:;Volume( 045 ):;issue: 009::page 2356
    Author:
    Bell, Michael J.
    DOI: 10.1175/JPO-D-14-0251.1
    Publisher: American Meteorological Society
    Abstract: he Sverdrup relationship when applied to the Southern Ocean suggests that some isopycnals that are deep in the eastern Pacific will shoal in the Atlantic. Cold waters surfacing in the South Atlantic at midlatitudes would be warmed by the atmosphere. The potential for water mass transformations in this region is studied by applying a three-layer planetary geostrophic model to a wide ocean basin driven by the Ekman upwelling typical of the Southern Ocean surface winds. The model uses a simple physically based parameterization of the entrainment of mass into the surface layer with zonally symmetric atmospheric surface fields to find steady-state subpolar gyre solutions. The solutions are found numerically by specifying suitable boundary conditions and integrating along characteristics. With reasonable parameter settings, transformations of more than 10 Sverdrups (Sv; 1 Sv ≡ 106 m3 s?1) of water between layers are obtained. The water mass transformations are sensitive to the strength of the wind stress curl and the width of the basin and relatively insensitive to the parameterization of the surface heat fluxes. On the western side of the basin where the cold waters are near the surface, there is a large region where there is a local balance between the Ekman pumping and the exchange of mass between layers. Simple formulas are derived for the water mass transformation rates in terms of the difference between the maximum and minimum northward Ekman transports integrated across the basin and the depths of the isopycnal layers on the eastern boundary. The relevance of the model to the Southern Ocean and the Atlantic meridional overturning circulation is briefly discussed.
    • Download: (2.390Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Water Mass Transformations Driven by Ekman Upwelling and Surface Warming in Subpolar Gyres

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4226960
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorBell, Michael J.
    date accessioned2017-06-09T17:21:17Z
    date available2017-06-09T17:21:17Z
    date copyright2015/09/01
    date issued2015
    identifier issn0022-3670
    identifier otherams-83705.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4226960
    description abstracthe Sverdrup relationship when applied to the Southern Ocean suggests that some isopycnals that are deep in the eastern Pacific will shoal in the Atlantic. Cold waters surfacing in the South Atlantic at midlatitudes would be warmed by the atmosphere. The potential for water mass transformations in this region is studied by applying a three-layer planetary geostrophic model to a wide ocean basin driven by the Ekman upwelling typical of the Southern Ocean surface winds. The model uses a simple physically based parameterization of the entrainment of mass into the surface layer with zonally symmetric atmospheric surface fields to find steady-state subpolar gyre solutions. The solutions are found numerically by specifying suitable boundary conditions and integrating along characteristics. With reasonable parameter settings, transformations of more than 10 Sverdrups (Sv; 1 Sv ≡ 106 m3 s?1) of water between layers are obtained. The water mass transformations are sensitive to the strength of the wind stress curl and the width of the basin and relatively insensitive to the parameterization of the surface heat fluxes. On the western side of the basin where the cold waters are near the surface, there is a large region where there is a local balance between the Ekman pumping and the exchange of mass between layers. Simple formulas are derived for the water mass transformation rates in terms of the difference between the maximum and minimum northward Ekman transports integrated across the basin and the depths of the isopycnal layers on the eastern boundary. The relevance of the model to the Southern Ocean and the Atlantic meridional overturning circulation is briefly discussed.
    publisherAmerican Meteorological Society
    titleWater Mass Transformations Driven by Ekman Upwelling and Surface Warming in Subpolar Gyres
    typeJournal Paper
    journal volume45
    journal issue9
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO-D-14-0251.1
    journal fristpage2356
    journal lastpage2380
    treeJournal of Physical Oceanography:;2015:;Volume( 045 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian