YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Stochastic Modeling of Coherent Wave Fields over Variable Depth

    Source: Journal of Physical Oceanography:;2015:;Volume( 045 ):;issue: 004::page 1139
    Author:
    Smit, P. B.
    ,
    Janssen, T. T.
    ,
    Herbers, T. H. C.
    DOI: 10.1175/JPO-D-14-0219.1
    Publisher: American Meteorological Society
    Abstract: efractive focusing of swell waves can result in fast-scale variations in the wave statistics because of wave interference, which cannot be resolved by stochastic wave models based on the radiative transport equation. Quasi-coherent statistical theory does account for such statistical interferences and the associated wave inhomogeneities, but the theory has thus far been presented in a form that appears incompatible with models based on the radiative transfer equation (RTE). Moreover, the quasi-coherent theory has never been tested against field data, and it is not clear how the coherent information inherent to such models can be used for better understanding coastal wave and circulation dynamics. This study therefore revisits the derivation of quasi-coherent theory to formulate it into a radiative transport equation with a forcing term that accounts for the inhomogeneous part of the wave field. This paper shows how the model can be nested within (or otherwise used in conjunction with) quasi-homogeneous wave models based on the RTE. Through comparison to laboratory data, numerical simulations of a deterministic model, and field observations of waves propagating over a nearshore canyon head, the predictive capability of the model is validated. The authors discuss the interference patterns predicted by the model through evaluation of a complex cross-correlation function and highlight the differences with quasi-homogeneous predictions. These results show that quasi-coherent theory can extend models based on the RTE to resolve coherent interference patterns and standing wave features in coastal areas, which are believed to be important in nearshore circulation and sediment transport.
    • Download: (2.531Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Stochastic Modeling of Coherent Wave Fields over Variable Depth

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4226934
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorSmit, P. B.
    contributor authorJanssen, T. T.
    contributor authorHerbers, T. H. C.
    date accessioned2017-06-09T17:21:12Z
    date available2017-06-09T17:21:12Z
    date copyright2015/04/01
    date issued2015
    identifier issn0022-3670
    identifier otherams-83682.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4226934
    description abstractefractive focusing of swell waves can result in fast-scale variations in the wave statistics because of wave interference, which cannot be resolved by stochastic wave models based on the radiative transport equation. Quasi-coherent statistical theory does account for such statistical interferences and the associated wave inhomogeneities, but the theory has thus far been presented in a form that appears incompatible with models based on the radiative transfer equation (RTE). Moreover, the quasi-coherent theory has never been tested against field data, and it is not clear how the coherent information inherent to such models can be used for better understanding coastal wave and circulation dynamics. This study therefore revisits the derivation of quasi-coherent theory to formulate it into a radiative transport equation with a forcing term that accounts for the inhomogeneous part of the wave field. This paper shows how the model can be nested within (or otherwise used in conjunction with) quasi-homogeneous wave models based on the RTE. Through comparison to laboratory data, numerical simulations of a deterministic model, and field observations of waves propagating over a nearshore canyon head, the predictive capability of the model is validated. The authors discuss the interference patterns predicted by the model through evaluation of a complex cross-correlation function and highlight the differences with quasi-homogeneous predictions. These results show that quasi-coherent theory can extend models based on the RTE to resolve coherent interference patterns and standing wave features in coastal areas, which are believed to be important in nearshore circulation and sediment transport.
    publisherAmerican Meteorological Society
    titleStochastic Modeling of Coherent Wave Fields over Variable Depth
    typeJournal Paper
    journal volume45
    journal issue4
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO-D-14-0219.1
    journal fristpage1139
    journal lastpage1154
    treeJournal of Physical Oceanography:;2015:;Volume( 045 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian