YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Sensitivity of Salt Wedge Estuaries to Channel Geometry

    Source: Journal of Physical Oceanography:;2015:;Volume( 045 ):;issue: 012::page 3169
    Author:
    Poggioli, Anthony R.
    ,
    Horner-Devine, Alexander R.
    DOI: 10.1175/JPO-D-14-0218.1
    Publisher: American Meteorological Society
    Abstract: he authors develop a two-layer hydraulic model to determine the saline intrusion length in sloped and converging salt wedge estuaries. They find that the nondimensional intrusion length = CiL/hS depends significantly on the channel bottom slope and the rate and magnitude of landward width convergence, in addition to the freshwater Froude number. In the definition of , Ci is a quadratic interfacial drag coefficient, L is the salt wedge intrusion length, and hS is the depth at the mouth of the estuary. Bottom slope is found to limit the saline intrusion length, and this limitation accounts for the deviation of the observed exponent n in a scaling relationship with the river discharge of the form L ~ Q?n from the canonical value of 2 to 2.5 predicted by the theory of Schijf and Schönfeld for a flat, prismatic estuary. The authors find that estuary convergence is important only when the ratio of the slope-limited intrusion length to the convergence length is greater than one, and that the effects of convergence are less significant than those of slope limitation. They compare this model to field and validated numerical data and find that the solution predicts the intrusion length with good accuracy, improving on the flat, prismatic solution by orders of magnitude. While this model has good predictive capability, it is sensitive to Ci and the location of the hydraulic control point, both difficult to determine a priori.
    • Download: (1.294Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Sensitivity of Salt Wedge Estuaries to Channel Geometry

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4226932
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorPoggioli, Anthony R.
    contributor authorHorner-Devine, Alexander R.
    date accessioned2017-06-09T17:21:12Z
    date available2017-06-09T17:21:12Z
    date copyright2015/12/01
    date issued2015
    identifier issn0022-3670
    identifier otherams-83681.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4226932
    description abstracthe authors develop a two-layer hydraulic model to determine the saline intrusion length in sloped and converging salt wedge estuaries. They find that the nondimensional intrusion length = CiL/hS depends significantly on the channel bottom slope and the rate and magnitude of landward width convergence, in addition to the freshwater Froude number. In the definition of , Ci is a quadratic interfacial drag coefficient, L is the salt wedge intrusion length, and hS is the depth at the mouth of the estuary. Bottom slope is found to limit the saline intrusion length, and this limitation accounts for the deviation of the observed exponent n in a scaling relationship with the river discharge of the form L ~ Q?n from the canonical value of 2 to 2.5 predicted by the theory of Schijf and Schönfeld for a flat, prismatic estuary. The authors find that estuary convergence is important only when the ratio of the slope-limited intrusion length to the convergence length is greater than one, and that the effects of convergence are less significant than those of slope limitation. They compare this model to field and validated numerical data and find that the solution predicts the intrusion length with good accuracy, improving on the flat, prismatic solution by orders of magnitude. While this model has good predictive capability, it is sensitive to Ci and the location of the hydraulic control point, both difficult to determine a priori.
    publisherAmerican Meteorological Society
    titleThe Sensitivity of Salt Wedge Estuaries to Channel Geometry
    typeJournal Paper
    journal volume45
    journal issue12
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO-D-14-0218.1
    journal fristpage3169
    journal lastpage3183
    treeJournal of Physical Oceanography:;2015:;Volume( 045 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian