YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Multimodal Internal Waves Generated over a Subcritical Ridge: Impact of the Upper-Ocean Stratification

    Source: Journal of Physical Oceanography:;2015:;Volume( 045 ):;issue: 003::page 904
    Author:
    Xie, Jieshuo
    ,
    Pan, Jiayi
    ,
    Jay, David A.
    DOI: 10.1175/JPO-D-14-0132.1
    Publisher: American Meteorological Society
    Abstract: nteraction of barotropic tides with subsurface topography is vital to ocean mixing. Yet the behavior of large-amplitude, nonlinear, internal solitary waves (ISWs) that can cause strong mixing remains poorly understood, especially that of higher-mode and multimodal internal waves. Therefore, a 2.5-dimensional, nonhydrostatic model with adjustable vertical resolution was developed to investigate effects of upper-ocean stratification on tidally induced multimodal internal waves and to show how they are generated by the subcritical ridge where only upward-propagating internal wave beams (IWBs) are present. The effects of the stratification on properties and characteristics of the excited IWBs and on the energy partition of the radiated mode-1 and mode-2 internal waves were investigated based on the model results. Higher modes of internal waves can also be effectively generated in the IWBs by the subcritical topography, and the contribution to IWBs from higher modes increases with the upper-ocean stratification. Mode-2 ISWs can be excited from the IWBs if both the tidal Froude number and the contribution to IWBs from mode-2 waves are sufficiently high (U0 is the tidal current speed, and c2 is the phase speed of mode-2 waves). In a moderately stratified upper ocean, both mode-1 and mode-2 ISWs can be produced, but for weak (strong) stratification, only mode-1 (mode-2) ISWs are generated. Further, it is found that the distance between two successive mode-1 or mode-2 ISW trains increases linearly with the upper-ocean stratification. The ratio of the kinetic energy to the available potential energy for the mode-2 ISWs increases with the upper-ocean stratification in a strongly stratified ocean.
    • Download: (5.550Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Multimodal Internal Waves Generated over a Subcritical Ridge: Impact of the Upper-Ocean Stratification

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4226861
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorXie, Jieshuo
    contributor authorPan, Jiayi
    contributor authorJay, David A.
    date accessioned2017-06-09T17:20:56Z
    date available2017-06-09T17:20:56Z
    date copyright2015/03/01
    date issued2015
    identifier issn0022-3670
    identifier otherams-83616.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4226861
    description abstractnteraction of barotropic tides with subsurface topography is vital to ocean mixing. Yet the behavior of large-amplitude, nonlinear, internal solitary waves (ISWs) that can cause strong mixing remains poorly understood, especially that of higher-mode and multimodal internal waves. Therefore, a 2.5-dimensional, nonhydrostatic model with adjustable vertical resolution was developed to investigate effects of upper-ocean stratification on tidally induced multimodal internal waves and to show how they are generated by the subcritical ridge where only upward-propagating internal wave beams (IWBs) are present. The effects of the stratification on properties and characteristics of the excited IWBs and on the energy partition of the radiated mode-1 and mode-2 internal waves were investigated based on the model results. Higher modes of internal waves can also be effectively generated in the IWBs by the subcritical topography, and the contribution to IWBs from higher modes increases with the upper-ocean stratification. Mode-2 ISWs can be excited from the IWBs if both the tidal Froude number and the contribution to IWBs from mode-2 waves are sufficiently high (U0 is the tidal current speed, and c2 is the phase speed of mode-2 waves). In a moderately stratified upper ocean, both mode-1 and mode-2 ISWs can be produced, but for weak (strong) stratification, only mode-1 (mode-2) ISWs are generated. Further, it is found that the distance between two successive mode-1 or mode-2 ISW trains increases linearly with the upper-ocean stratification. The ratio of the kinetic energy to the available potential energy for the mode-2 ISWs increases with the upper-ocean stratification in a strongly stratified ocean.
    publisherAmerican Meteorological Society
    titleMultimodal Internal Waves Generated over a Subcritical Ridge: Impact of the Upper-Ocean Stratification
    typeJournal Paper
    journal volume45
    journal issue3
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO-D-14-0132.1
    journal fristpage904
    journal lastpage926
    treeJournal of Physical Oceanography:;2015:;Volume( 045 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian