YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Combined Derivation of the Integrated and Vertically Resolved, Coupled Wave–Current Equations

    Source: Journal of Physical Oceanography:;2015:;Volume( 045 ):;issue: 006::page 1453
    Author:
    Mellor, George
    DOI: 10.1175/JPO-D-14-0112.1
    Publisher: American Meteorological Society
    Abstract: here exist different theories representing the effects of surface gravity waves on oceanic flow fields. In the past, the author has conjectured that the vertically integrated, two-dimensional fluid equations of motion put forward by Longuet-Higgins and Stewart are correct and that theories that differ from their theory cannot be entirely correct; this paper explores these differences. Longuet-Higgins and Stewart deduced vertically integrated, two-dimensional equations featuring a wave radiation stress term in the fluid dynamic, momentum equation. More recently, the author has proposed vertically dependent, three-dimensional equations that have required correction but when vertically integrated, agreed with the earlier, two-dimensional equations. This paper derives both vertically independent and vertically dependent equations from the same base and, importantly, using the same expression for pressure in the belief that the paper will contribute to the understanding and clarification of this seemingly difficult topic in ocean dynamics. An error in the classical papers by Longuet-Higgins and Stewart has been detected. Although the final phase-averaged result was correct, the error has had consequences in the development of vertically dependent equations. The prognostic equations in this paper are for the Eulerian current plus Stokes drift; toward the end of the paper these equations are contrasted with prognostic equations for the Eulerian current alone.
    • Download: (1012.Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Combined Derivation of the Integrated and Vertically Resolved, Coupled Wave–Current Equations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4226847
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorMellor, George
    date accessioned2017-06-09T17:20:53Z
    date available2017-06-09T17:20:53Z
    date copyright2015/06/01
    date issued2015
    identifier issn0022-3670
    identifier otherams-83603.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4226847
    description abstracthere exist different theories representing the effects of surface gravity waves on oceanic flow fields. In the past, the author has conjectured that the vertically integrated, two-dimensional fluid equations of motion put forward by Longuet-Higgins and Stewart are correct and that theories that differ from their theory cannot be entirely correct; this paper explores these differences. Longuet-Higgins and Stewart deduced vertically integrated, two-dimensional equations featuring a wave radiation stress term in the fluid dynamic, momentum equation. More recently, the author has proposed vertically dependent, three-dimensional equations that have required correction but when vertically integrated, agreed with the earlier, two-dimensional equations. This paper derives both vertically independent and vertically dependent equations from the same base and, importantly, using the same expression for pressure in the belief that the paper will contribute to the understanding and clarification of this seemingly difficult topic in ocean dynamics. An error in the classical papers by Longuet-Higgins and Stewart has been detected. Although the final phase-averaged result was correct, the error has had consequences in the development of vertically dependent equations. The prognostic equations in this paper are for the Eulerian current plus Stokes drift; toward the end of the paper these equations are contrasted with prognostic equations for the Eulerian current alone.
    publisherAmerican Meteorological Society
    titleA Combined Derivation of the Integrated and Vertically Resolved, Coupled Wave–Current Equations
    typeJournal Paper
    journal volume45
    journal issue6
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO-D-14-0112.1
    journal fristpage1453
    journal lastpage1463
    treeJournal of Physical Oceanography:;2015:;Volume( 045 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian