YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Topographic Coupling of the Atlantic Overturning and Gyre Circulations

    Source: Journal of Physical Oceanography:;2015:;Volume( 045 ):;issue: 005::page 1258
    Author:
    Yeager, Stephen
    DOI: 10.1175/JPO-D-14-0100.1
    Publisher: American Meteorological Society
    Abstract: he vorticity dynamics associated with the mean and time-varying gyre and overturning circulations of the Atlantic Ocean are examined in a realistic ocean model hindcast simulation of the late twentieth century. Abyssal flow interaction with sloping bottom bathymetry gives rise to the bottom pressure torque (BPT) term of the vertically integrated vorticity equation. The dominance of this term in the closure of the barotropic gyre circulation noted in previous studies is corroborated here for both non-eddy-resolving and eddy-resolving versions of the Parallel Ocean Program (POP) model. This study shows that BPT is also a dominant term in the vorticity balance of the Atlantic meridional overturning circulation (AMOC) and therefore represents a key dynamical link between the overturning and gyre streamfunctions. The interannual variability of the Atlantic circulation over the last several decades, viewed in terms of time-varying integral vorticity balances, demonstrates the fundamental role played by BPT in coupling the large-scale barotropic and baroclinic flows. Forcing perturbation experiments show how flow?bathymetry interactions mediate buoyancy-driven changes in the gyre circulation and momentum-driven changes in the AMOC. Examples of topographic coupling of the overturning and gyre circulations that this analysis elucidates include the covariation of the high-latitude AMOC and subpolar gyre flows on decadal time scales, buoyancy-forced variance of the Gulf Stream, and large wind-driven variations in AMOC at subtropical latitudes.
    • Download: (6.220Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Topographic Coupling of the Atlantic Overturning and Gyre Circulations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4226836
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorYeager, Stephen
    date accessioned2017-06-09T17:20:51Z
    date available2017-06-09T17:20:51Z
    date copyright2015/05/01
    date issued2015
    identifier issn0022-3670
    identifier otherams-83594.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4226836
    description abstracthe vorticity dynamics associated with the mean and time-varying gyre and overturning circulations of the Atlantic Ocean are examined in a realistic ocean model hindcast simulation of the late twentieth century. Abyssal flow interaction with sloping bottom bathymetry gives rise to the bottom pressure torque (BPT) term of the vertically integrated vorticity equation. The dominance of this term in the closure of the barotropic gyre circulation noted in previous studies is corroborated here for both non-eddy-resolving and eddy-resolving versions of the Parallel Ocean Program (POP) model. This study shows that BPT is also a dominant term in the vorticity balance of the Atlantic meridional overturning circulation (AMOC) and therefore represents a key dynamical link between the overturning and gyre streamfunctions. The interannual variability of the Atlantic circulation over the last several decades, viewed in terms of time-varying integral vorticity balances, demonstrates the fundamental role played by BPT in coupling the large-scale barotropic and baroclinic flows. Forcing perturbation experiments show how flow?bathymetry interactions mediate buoyancy-driven changes in the gyre circulation and momentum-driven changes in the AMOC. Examples of topographic coupling of the overturning and gyre circulations that this analysis elucidates include the covariation of the high-latitude AMOC and subpolar gyre flows on decadal time scales, buoyancy-forced variance of the Gulf Stream, and large wind-driven variations in AMOC at subtropical latitudes.
    publisherAmerican Meteorological Society
    titleTopographic Coupling of the Atlantic Overturning and Gyre Circulations
    typeJournal Paper
    journal volume45
    journal issue5
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO-D-14-0100.1
    journal fristpage1258
    journal lastpage1284
    treeJournal of Physical Oceanography:;2015:;Volume( 045 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian