YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Biases in Thorpe-Scale Estimates of Turbulence Dissipation. Part II: Energetics Arguments and Turbulence Simulations

    Source: Journal of Physical Oceanography:;2015:;Volume( 045 ):;issue: 010::page 2522
    Author:
    Scotti, Alberto
    DOI: 10.1175/JPO-D-14-0092.1
    Publisher: American Meteorological Society
    Abstract: his paper uses the energetics framework developed by Scotti and White to provide a critical assessment of the widely used Thorpe-scale method, which is used to estimate dissipation and mixing rates in stratified turbulent flows from density measurements along vertical profiles. This study shows that the relevant displacement scale in general is not the rms value of the Thorpe displacement. Rather, the displacement field must be Reynolds decomposed to separate the mean from the turbulent component, and it is the turbulent component that ought to be used to diagnose mixing and dissipation. In general, the energetics of mixing in an overall stably stratified flow involves potentially complex exchanges among the available potential energy and kinetic energy associated with the mean and turbulent components of the flow. The author considers two limiting cases: shear-driven mixing, where mixing comes at the expense of the mean kinetic energy of the flow, and convective-driven mixing, which taps the available potential energy of the mean flow to drive mixing. In shear-driven flows, the rms of the Thorpe displacement, known as the Thorpe scale is shown to be equivalent to the turbulent component of the displacement. In this case, the Thorpe scale approximates the Ozmidov scale, or, which is the same, the Thorpe scale is the appropriate scale to diagnose mixing and dissipation. However, when mixing is driven by the available potential energy of the mean flow (convective-driven mixing), this study shows that the Thorpe scale is (much) larger than the Ozmidov scale. Using the rms of the Thorpe displacement overestimates dissipation and mixing, since the amount of turbulent available potential energy (measured by the turbulent displacement) is only a fraction of the total available potential energy (measured by the Thorpe scale). Corrective measures are discussed that can be used to diagnose mixing from knowledge of the Thorpe displacement. In a companion paper, Mater et al. analyze field data and show that the Thorpe scale can indeed be much larger than the Ozmidov scale.
    • Download: (1.820Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Biases in Thorpe-Scale Estimates of Turbulence Dissipation. Part II: Energetics Arguments and Turbulence Simulations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4226829
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorScotti, Alberto
    date accessioned2017-06-09T17:20:50Z
    date available2017-06-09T17:20:50Z
    date copyright2015/10/01
    date issued2015
    identifier issn0022-3670
    identifier otherams-83588.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4226829
    description abstracthis paper uses the energetics framework developed by Scotti and White to provide a critical assessment of the widely used Thorpe-scale method, which is used to estimate dissipation and mixing rates in stratified turbulent flows from density measurements along vertical profiles. This study shows that the relevant displacement scale in general is not the rms value of the Thorpe displacement. Rather, the displacement field must be Reynolds decomposed to separate the mean from the turbulent component, and it is the turbulent component that ought to be used to diagnose mixing and dissipation. In general, the energetics of mixing in an overall stably stratified flow involves potentially complex exchanges among the available potential energy and kinetic energy associated with the mean and turbulent components of the flow. The author considers two limiting cases: shear-driven mixing, where mixing comes at the expense of the mean kinetic energy of the flow, and convective-driven mixing, which taps the available potential energy of the mean flow to drive mixing. In shear-driven flows, the rms of the Thorpe displacement, known as the Thorpe scale is shown to be equivalent to the turbulent component of the displacement. In this case, the Thorpe scale approximates the Ozmidov scale, or, which is the same, the Thorpe scale is the appropriate scale to diagnose mixing and dissipation. However, when mixing is driven by the available potential energy of the mean flow (convective-driven mixing), this study shows that the Thorpe scale is (much) larger than the Ozmidov scale. Using the rms of the Thorpe displacement overestimates dissipation and mixing, since the amount of turbulent available potential energy (measured by the turbulent displacement) is only a fraction of the total available potential energy (measured by the Thorpe scale). Corrective measures are discussed that can be used to diagnose mixing from knowledge of the Thorpe displacement. In a companion paper, Mater et al. analyze field data and show that the Thorpe scale can indeed be much larger than the Ozmidov scale.
    publisherAmerican Meteorological Society
    titleBiases in Thorpe-Scale Estimates of Turbulence Dissipation. Part II: Energetics Arguments and Turbulence Simulations
    typeJournal Paper
    journal volume45
    journal issue10
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO-D-14-0092.1
    journal fristpage2522
    journal lastpage2543
    treeJournal of Physical Oceanography:;2015:;Volume( 045 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian