YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Available Potential Energy and the General Circulation: Partitioning Wind, Buoyancy Forcing, and Diapycnal Mixing

    Source: Journal of Physical Oceanography:;2015:;Volume( 045 ):;issue: 006::page 1510
    Author:
    Zemskova, Varvara E.
    ,
    White, Brian L.
    ,
    Scotti, Alberto
    DOI: 10.1175/JPO-D-14-0043.1
    Publisher: American Meteorological Society
    Abstract: he ocean energy cycle is calculated using a new available potential energy (APE) decomposition, which partitions adiabatic buoyancy fluxes from diapycnal mixing, applied to results from the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2), eddy-permitting ocean state estimate and observed surface buoyancy fluxes from the WHOI OAFlux project. Compared with the traditional Lorenz energy cycle, this framework provides a more accurate estimate of the background potential energy (PE) of the global oceans and the surface generation and interior fluxes of APE. Calculations of the global energy budget using 16 yr of ECCO2 output suggest that the adiabatic portion of the general circulation is maintained by a balance between the mean wind-driven upwelling that increases APE (+0.27 TW) and time-fluctuating processes, including mesoscale eddies, which release APE (?0.27 TW). The APE generated by surface buoyancy fluxes (0.46 TW) is comparable to the generation by the mean winds. The global rate of irreversible mixing (0.46 TW), which balances surface APE generation, is consistent with previous estimates of the diapycnal fluxes associated with maintaining deep stratification (see Munk and Wunsch) and a global diapycnal diffusivity of O(1 ? 10?4) m2 s?1. However, the net contribution of diapycnal mixing to the total potential energy is negligible, which suggests that mixing, contrary to one current paradigm, does not place a global demand on kinetic energy dissipation. However, there are regions where mixing is significant, for example, between 3000 and 5000 m (in ECCO2), where mixing increases PE by 0.1 TW. The work provides a new framework for separating adiabatic?diabatic fluxes and for monitoring the global rate of diapycnal mixing rate using measurable surface properties such as SST and heat flux.
    • Download: (2.433Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Available Potential Energy and the General Circulation: Partitioning Wind, Buoyancy Forcing, and Diapycnal Mixing

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4226791
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorZemskova, Varvara E.
    contributor authorWhite, Brian L.
    contributor authorScotti, Alberto
    date accessioned2017-06-09T17:20:44Z
    date available2017-06-09T17:20:44Z
    date copyright2015/06/01
    date issued2015
    identifier issn0022-3670
    identifier otherams-83553.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4226791
    description abstracthe ocean energy cycle is calculated using a new available potential energy (APE) decomposition, which partitions adiabatic buoyancy fluxes from diapycnal mixing, applied to results from the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2), eddy-permitting ocean state estimate and observed surface buoyancy fluxes from the WHOI OAFlux project. Compared with the traditional Lorenz energy cycle, this framework provides a more accurate estimate of the background potential energy (PE) of the global oceans and the surface generation and interior fluxes of APE. Calculations of the global energy budget using 16 yr of ECCO2 output suggest that the adiabatic portion of the general circulation is maintained by a balance between the mean wind-driven upwelling that increases APE (+0.27 TW) and time-fluctuating processes, including mesoscale eddies, which release APE (?0.27 TW). The APE generated by surface buoyancy fluxes (0.46 TW) is comparable to the generation by the mean winds. The global rate of irreversible mixing (0.46 TW), which balances surface APE generation, is consistent with previous estimates of the diapycnal fluxes associated with maintaining deep stratification (see Munk and Wunsch) and a global diapycnal diffusivity of O(1 ? 10?4) m2 s?1. However, the net contribution of diapycnal mixing to the total potential energy is negligible, which suggests that mixing, contrary to one current paradigm, does not place a global demand on kinetic energy dissipation. However, there are regions where mixing is significant, for example, between 3000 and 5000 m (in ECCO2), where mixing increases PE by 0.1 TW. The work provides a new framework for separating adiabatic?diabatic fluxes and for monitoring the global rate of diapycnal mixing rate using measurable surface properties such as SST and heat flux.
    publisherAmerican Meteorological Society
    titleAvailable Potential Energy and the General Circulation: Partitioning Wind, Buoyancy Forcing, and Diapycnal Mixing
    typeJournal Paper
    journal volume45
    journal issue6
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO-D-14-0043.1
    journal fristpage1510
    journal lastpage1531
    treeJournal of Physical Oceanography:;2015:;Volume( 045 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian