YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Global Calculation of Tidal Energy Conversion into Vertical Normal Modes

    Source: Journal of Physical Oceanography:;2014:;Volume( 044 ):;issue: 012::page 3225
    Author:
    Falahat, Saeed
    ,
    Nycander, Jonas
    ,
    Roquet, Fabien
    ,
    Zarroug, Moundheur
    DOI: 10.1175/JPO-D-14-0002.1
    Publisher: American Meteorological Society
    Abstract: direct calculation of the tidal generation of internal waves over the global ocean is presented. The calculation is based on a semianalytical model, assuming that the internal tide characteristic slope exceeds the bathymetric slope (subcritical slope) and the bathymetric height is small relative to the vertical scale of the wave, as well as that the horizontal tidal excursion is smaller than the horizontal topographic scale. The calculation is performed for the M2 tidal constituent. In contrast to previous similar computations, the internal tide is projected onto vertical eigenmodes, which gives two advantages. First, the vertical density profile and the finite ocean depth are taken into account in a fully consistent way, in contrast to earlier work based on the WKB approximation. Nevertheless, the WKB-based total global conversion follows closely that obtained using the eigenmode decomposition in each of the latitudinal and vertical distributions. Second, the information about the distribution of the conversion energy over different vertical modes is valuable, since the lowest modes can propagate over long distances, while high modes are more likely to dissipate locally, near the generation site. It is found that the difference between the vertical distributions of the tidal conversion into the vertical modes is smaller for the case of very deep ocean than the shallow-ocean depth. The results of the present work pave the way for future work on the vertical and horizontal distribution of the mixing caused by internal tides.
    • Download: (2.130Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Global Calculation of Tidal Energy Conversion into Vertical Normal Modes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4226768
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorFalahat, Saeed
    contributor authorNycander, Jonas
    contributor authorRoquet, Fabien
    contributor authorZarroug, Moundheur
    date accessioned2017-06-09T17:20:39Z
    date available2017-06-09T17:20:39Z
    date copyright2014/12/01
    date issued2014
    identifier issn0022-3670
    identifier otherams-83532.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4226768
    description abstractdirect calculation of the tidal generation of internal waves over the global ocean is presented. The calculation is based on a semianalytical model, assuming that the internal tide characteristic slope exceeds the bathymetric slope (subcritical slope) and the bathymetric height is small relative to the vertical scale of the wave, as well as that the horizontal tidal excursion is smaller than the horizontal topographic scale. The calculation is performed for the M2 tidal constituent. In contrast to previous similar computations, the internal tide is projected onto vertical eigenmodes, which gives two advantages. First, the vertical density profile and the finite ocean depth are taken into account in a fully consistent way, in contrast to earlier work based on the WKB approximation. Nevertheless, the WKB-based total global conversion follows closely that obtained using the eigenmode decomposition in each of the latitudinal and vertical distributions. Second, the information about the distribution of the conversion energy over different vertical modes is valuable, since the lowest modes can propagate over long distances, while high modes are more likely to dissipate locally, near the generation site. It is found that the difference between the vertical distributions of the tidal conversion into the vertical modes is smaller for the case of very deep ocean than the shallow-ocean depth. The results of the present work pave the way for future work on the vertical and horizontal distribution of the mixing caused by internal tides.
    publisherAmerican Meteorological Society
    titleGlobal Calculation of Tidal Energy Conversion into Vertical Normal Modes
    typeJournal Paper
    journal volume44
    journal issue12
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/JPO-D-14-0002.1
    journal fristpage3225
    journal lastpage3244
    treeJournal of Physical Oceanography:;2014:;Volume( 044 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian